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Abstract

As Machine Learning (ML) becomes pervasive in various real world systems, the need
for models to be understandable, either by being interpretable or explainable, has increased.
We focus on interpretability here, noting that models often need to be constrained in size for
them to be considered interpretable, e.g., a decision tree of depth 5 is easier to interpret than
one of depth 50. But smaller models also tend to have high bias. This suggests a trade-off
between interpretability and accuracy. We propose a model agnostic technique to minimize
this trade-off. Our strategy is to first learn an oracle, a highly accurate probabilistic
model on the training data. The uncertainty in the oracle’s predictions are used to learn a
sampling distribution for the training data. The interpretable model is then trained on a
data sample obtained using this distribution, leading often to significantly greater accuracy.

We formulate the sampling strategy as an optimization problem. Our solution1 pos-
sesses the following key favorable properties: (1) it uses a fixed number of seven optimization
variables, irrespective of the dimensionality of the data (2) it is model agnostic - in that
both the interpretable model and the oracle may belong to arbitrary model families (3) it
has a flexible notion of model size, and can accommodate vector sizes (4) it is a framework,
enabling it to benefit from progress in the area of optimization.

We also present the following interesting observations: (a) In general, the optimal
training distribution for a model when its size is small, is different from the test distribution;
(b) This effect exists even when the interpretable model and the oracle are from highly
disparate model families: we show this on a text classification task, by using a Gated
Recurrent Unit network as an oracle to improve the sequence classification accuracy of a
Decision Tree that uses character n-grams; (c) Our technique may be used to identify an
optimal training sample of a given sample size, for a model.

Empirical results using multiple real world datasets, various oracles and interpretable
models with different notions of model sizes, are presented. We observe significant relative
improvements in the F1-score in most cases, occasionally seeing improvements greater than
100% over baselines.

1. Introduction

In recent years, Machine Learning (ML) models have become increasingly pervasive in
various real world systems. In many of these applications, such as movie and product rec-
ommendations, it is sufficient that the ML model is accurate. However, there is a growing
emphasis on models to be understandable as well, especially in domains where the cost

1. Available as a Python package (Ghose, 2021).
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of being wrong is prohibitively high, e.g., medicine and healthcare (Caruana et al., 2015;
Ustun & Rudin, 2016), defence applications (Gunning, 2016), law enforcement (Angwin,
Larson, Mattu, & Kirchner, 2016; Larson, Mattu, Kirchner, & Angwin, 2016) and banking
(Castellanos & Nash, 2018). It is expected that soon model transparency would be man-
dated by law within systems involving digital interactions (Goodman & Flaxman, 2017;
Clarke, 2019).

Contemporary research in this area may be categorized into two broad approaches:

1. Interpretability : this area looks at building models that are considered easy to under-
stand as-is, e.g., rule lists (Letham, Rudin, McCormick, & Madigan, 2013; Angelino,
Larus-Stone, Alabi, Seltzer, & Rudin, 2017), decision trees (Breiman et al., 1984;
Quinlan, 1993; Quinlan, 2004; Hu, Rudin, & Seltzer, 2019), sparse linear models
(Ustun & Rudin, 2016), decision sets (Lakkaraju, Bach, & Leskovec, 2016), rule sets
(T. Wang, 2018), pairwise interaction models that may be linear (Lim & Hastie, 2015)
or additive (Lou, Caruana, Gehrke, & Hooker, 2013), task-specific interpretable mod-
els like neural-symbolic models for visual question-answering (Yi et al., 2018) and rules
for negation scope detection in natural language (Pröllochs, Feuerriegel, & Neumann,
2019).

2. Explainability : this area looks at techniques that may be used to understand models
that do not naturally lend themselves to a simple interpretation, e.g., locally inter-
pretable explanations as provided by LIME and Anchors (Ribeiro, Singh, & Guestrin,
2016, 2018), visual explanations for Convolutional Neural Networks such as Grad-
CAM (Selvaraju et al., 2017) and Ablation-CAM (Desai & Ramaswamy, 2020), influ-
ence functions (Koh & Liang, 2017) and feature attribution based on Shapley values
(Lundberg & Lee, 2017; Ancona, Oztireli, & Gross, 2019).

Anecdotally it seems that interpretable models are preferably small in size: a linear
model with 10 terms, against one with 100 terms, or a decision tree (DT) of depth = 5
as opposed to one of depth = 50, is easier to parse by humans. This relationship between
interpretability and model size has been scientifically studied as well :

• User studies indicate that small model size is one of a few important factors that makes
a model interpretable: Lage et al. (2019) show in the context of decision sets that small
model sizes aid interpretability (although it’s not the most important property do so);
Poursabzi-Sangdeh, Goldstein, Hofman, Wortman Vaughan, and Wallach (2021) find
that smaller model sizes aid in certain tasks that require a human subject to have
understood how a model works; Feldman (2000) notes that longer Boolean formulae
are harder to learn by humans.

While model size is important, Kulesza et al. (2013) caution against focusing on size
in isolation, arguing smaller model sizes can be detrimental to understanding if they
are too simplistic. Freitas (2014) highlights this aspect as well.

• This role of model size is variously acknowledged in the design and analysis of inter-
pretable models: Herman (2017) refers to this as low explanation complexity, this is
seen as important for simulability - ease of simulating the reasoning process of a model
by a human (Lipton, 2018; Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2019) - and
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is often listed as a desirable property in interpretable model representations (Ribeiro
et al., 2016; Lakkaraju et al., 2016; Angelino et al., 2017; Murdoch et al., 2019;
Bertsimas, Delarue, Jaillet, & Martin, 2019).

Based on existing literature, we note that it is desirable for interpretable models to be
small in size. Multiple algorithms explicitly account for it in their model training objective.
This is the aspect of interpretability our current work focuses on: we provide a technique
to improve the accuracy of a model of a given size. This technique may be used to produce
accurate models of small sizes; which are likely to be easier to interpret than larger models.

While many existing algorithms constrain model size for a specific model family, we pro-
pose a generic solution for this common requirement, i.e., our technique works on models
from an arbitrary model family for a flexible notion of model size. This also signifies the
practical value of our work: instead of picking an interpretable model family based on ac-
curacy, one may first construct an accurate but possibly large model from a preferred model
family, and then use our method to make it compact.

The challenge with constraining models to small sizes is that size is typically inversely
proportional to its bias, and therefore, such a model often trades off accuracy for inter-
pretability. Our technique precisely minimizes this trade-off using a novel form of adaptive
sampling :

1. We first learn an oracle: a highly accurate, possibly black-box, probabilistic model
trained on the training data. It produces a probability distribution over labels for an
instance x:

p(yi|x),∀yi ∈ {1, 2, ..., C} (1)

Here, {1, 2, ..., C} is the set of labels. The probabilities p(yi|x) may be informally
construed as confidences of predicting labels yi for instance x.

2. Next, we try to incorporate the oracle’s implicit representation of class boundaries into
our interpretable model. The mechanism used is to sample points from the training
data based on a learned distribution over the uncertainty in the oracle’s predictions2.

3. The interpretable model is then trained on this sample.

We empirically show that this often leads to significant improvements in the classification
accuracy, especially when the interpretable model size is small.

Figure 1 depicts our technique on a two-dimensional two-label dataset. The dataset
is shown in Figure 1(a). Figure 1(b) visualizes the generalization learned by a Gradient
Boosted Model (GBM) using this dataset. This serves as our oracle with an F1 score of
= 0.84. Figure 1(c) shows what a CART (Breiman et al., 1984) decision tree of depth = 5
learns; here F1 = 0.63. Finally, Figure 1(d) shows what a CART decision tree of depth = 5
learns, when we supply the GBM as an oracle to our technique. There is a significant
improvement with F1 = 0.77. Visually, we see the boundaries approximating the ones
learned by the oracle in Figure 1(b).

These are the key contributions of this work:

2. This is different from Knowledge Distillation; discussed in Section 2.2.
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Figure 1: A demo of our technique using a GBM as an oracle. See text for explanation.

1. We propose an algorithm to find a sampling distribution over a training dataset that
is optimal in terms of achieving high test accuracy, for a provided model family and
model size.

2. This algorithm is model-agnostic3 in that both the interpretable model and the oracle
may belong to arbitrary model families, e.g., these can be Linear Probability Model
and a Random Forest, or even a decision tree and a Gated Recurrent Network (GRU)
respectively. It also admits a flexible notion of model size, e.g., depth of a decision
tree, number of terms with non-zero coefficients in a linear model, number of trees
and maximum depth per tree in a GBM model.

3. The sampling algorithm internally solves an optimization problem to identify the
optimal distribution; however, in our formulation only a fixed number of seven opti-
mization variables are required irrespective of the dimensionality of the data.

We also present the following significant findings:

1. The proposed technique may be used as a tool to identify and study the optimal
training data for a given data size, for a model.

3. We adopt the common usage of the term (Ribeiro et al., 2016; Lundberg & Lee, 2017; Chen, Song,
Wainwright, & Jordan, 2018) to imply our technique is agnostic to model families.
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2. Based on extensive experiments with this algorithm, we make this, possibly counter-
intuitive, observation: in general, the optimal training distribution is not the same as
the test distribution, especially at small model sizes4.

We also explicitly show that as model size increases the optimal training distribution
progressively approximates the test distribution.

The remainder of the paper is structured as follows: in Section 2, we present details such
as terminology and prior work. Section 3 discusses the algorithm in detail while Section
4 presents extensive experimental validation using real-world datasets. In Section 5 we
discuss the results and their implications. Section 6 discusses directions for future work and
Section 7 concludes the paper.

2. Overview

In this section, we present a formal statement of the problem we are solving, followed by
a review of previous work, and then a discussion of where our technique fits in within the
standard model-building workflow. Finally, we establish the terminology relevant to the
remaining paper.

2.1 Formal Statement

We extend the terminology of Ghose and Ravindran (2020) to rigorously state the outcomes
we achieve in this work. Let:

1. accuracy(M,p) be the classification accuracy of model M on data represented by the
joint distribution p(X,Y ) of instances X and labels Y . The term “accuracy” is used
in a generic sense to represent prediction accuracy; depending on the application, this
might be F1-score, AUC, lift, etc.

2. trainF ,f (p, η) produce a model obtained using a specific training algorithm f , e.g.,
CART (Breiman et al., 1984), for a given model family F , e.g., DTs, where the model
size is fixed at η, e.g., trees with depth = 5. p represents the joint distribution p(X,Y )
of instances X and labels Y . trainF ,f (p, ∗) denotes there are no constraints imposed
on the model size.

Then, we claim, and empirically demonstrate, that the interpretable model trained on
the sample generated by our learned distribution is at least as accurate as one learned on
the original training data, and is up to as accurate as the oracle:

accuracy(MIpη, p) ≤ accuracy(MIqη, p) ≤ accuracy(MOp∗, p) (2)

where,

MIpη = trainI,g(p, η)

MIqη = trainI,g(q, η)

MOp∗ = trainO,h(p, ∗)

Here,

4. This “small model effect” reaffirms the observations in our previous work (Ghose & Ravindran, 2020).
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• For a model named MABC , this is what the subscripts denote:

1. A signifies if the model is an oracle or an interpretable model, with symbols O
and I respectively.

2. B denotes the training distribution.

3. C is the model size.

• g and h represent specific training algorithms, e.g., CART for DTs, rmsprop (Graves,
2013) for neural networks. These are omitted in model names for brevity, and are
made clear by context.

• We refer to MIpη as the “baseline model”, since this is the standard way of training
a model against which we evaluate our approach.

• p and q both denote joint distributions of X and Y . p(X,Y ) is the distribution we
are provided, and all our models use this as the test distribution. q(X,Y ) is the
distribution we learn using the uncertainty scores provided by the oracle MOp∗.

Note that, typically, the train and test distributions are identical for a model, as in
the terms accuracy(MIpη, p) and accuracy(MOp∗, p). However, for the middle term in
Equation 2 - accuracy(MIqη, p) - the train and test distributions, q and p respectively,
are different.

We also show that Equation 2 can be further refined into two size-regimes: the inter-
pretable model trained on the new sample is more accurate than the baseline model only
until a model size η∗. At sizes greater than η∗ the model performances are equal:

accuracy(MIpη, p) < accuracy(MIqη, p) ≤ accuracy(MOp∗, p), when η ≤ η∗ (3)

accuracy(MIpη, p) = accuracy(MIqη, p) ≤ accuracy(MOp∗, p), when η > η∗ (4)

2.2 Related Work

While there is precedent to using different train and test distributions, such as when there
is class imbalance in the data (Japkowicz & Stephen, 2002; Chawla, Bowyer, Hall, &
Kegelmeyer, 2002; He, Bai, Garcia, & Li, 2008; Santhiappan, Chelladurai, & Ravindran,
2018), our previous work on the topic (Ghose & Ravindran, 2020) is the only one we are
aware of that applies the principle to learn size-constrained models. Here, we compare and
contrast with various techniques that have some similarity with ours:

1. Density Tree based sampling: In our previous work (Ghose & Ravindran, 2020),
we addressed a similar problem of enhancing the accuracy of a size-constrained model.
The approach taken was to develop a specific form of decision tree, known as a density
tree, to capture neighborhood information, and sample from its various nodes to obtain
an optimal training distribution. Our current method may be considered a significant
evolution of the approach, as it adds the following flexibilities:
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(a) The choice of the oracle was restricted to a forest of density trees5 in our previous
work. Here, we might use an oracle from an arbitrary model family. This also has
the practical benefit that the oracle need not be learned from scratch: if there is
already a pre-trained probabilistic model like a deep neural network available for
a dataset, it may be conveniently plugged into our algorithm as-is, to improve
the accuracy of an interpretable model.

(b) The density trees and the interpretable model had to be constructed on the same
(or very similar) feature space. Here, this is not required, and the oracle might
be a sequence model that classifies text, while the interpretable model may be an
n-gram based classifier. This considerably broadens the scope of our technique.
We look at an example in Section 4.3.1.

2. Knowledge Distillation (KD): KD looks at using powerful “teacher” models (sim-
ilar to our oracle) to learn a smaller “student” model (Gou, Yu, Maybank, & Tao,
2021). The key differences with KD are:

(a) Unlike KD our goal is not to approximate the oracle’s performance. In fact, we
ignore the oracle’s label assignments entirely. This is in contrast to KD methods
that may use teacher-assigned labels (Bucilă, Caruana, & Niculescu-Mizil, 2006)
or distribution of label confidences (Hinton, Vinyals, & Dean, 2015a)6, or in
general, focus on extracting “dark knowledge” from the oracle in some form.
Instead, our goal is to evolve the smaller model towards a more accurate version.

(b) A lot of KD research focuses on Neural Networks, e.g., FitNets (Romero et al.,
2015), DistilBERT (Sanh, Debut, Chaumond, & Wolf, 2019). In contrast, our
technique is model-agnostic.

(c) Methodological differences aside, our observations suggest that there might be
no oracle required for obtaining the optimal training distribution (discussed in
Section 6).

3. Active Learning: In the case of active learning too, a predictive model maybe
learned on a distribution q(X,Y ) that is different from the test distribution p(X,Y ).
However, some significant differences are:

(a) Active learning works in the setting where only some or none of the labels of the
training data are initially known, and there is an explicit label acquisition cost.
We work within the traditional supervised setting where labels of all training
instances are known.

(b) The goal of an active learner is to minimize the total label acquisition cost,
while being as accurate as a supervised learner that has access to complete label
information. This is very different from our goal of performing better than a
supervised learner, especially when the model size is small, assuming complete
label information.

5. We don’t refer to the density trees as oracles in our previous work, but they play a role similar to the
oracle here.

6. While we use the uncertainty in the oracle’s prediction, note that we don’t know which labels is the
oracle more or less uncertain about, i.e., we ignore label identity.
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It must be noted that the term “oracle” in the active learning literature might refer
to either a model or a human labeler; in our work, it exclusively refers to a model.

4. Transfer Learning: Transfer learning studies informing the training process of a
“target” learner, given a “source” learner (Torrey & Shavlik, 2009; Pan & Yang,
2010; Weiss, Khoshgoftaar, & Wang, 2016). Our technique is ostensibly similar as
we have an oracle (our source learner) informing the interpretable model (our target
learner). However, here are some key differences:

(a) The typical application of transfer learning is in settings where the source learner
has access to more data than the model it must transfer knowledge to; here
transfer learning is seen as a way to overcome the data shortage by directly
having the source learner convey knowledge, in some form, to the target model.
This is different from our setting where the same data is available to both the
oracle and the interpretable model.

(b) Transfer learning techniques usually make some assumptions about the model
family. Some examples are Boolean concepts (Thrun & Mitchell, 1994), Markov
Logic Networks (Mihalkova & Mooney, 2006) or task-specific neural networks
like BERT (Devlin, Chang, Lee, & Toutanova, 2019) or ULMFiT (Howard &
Ruder, 2018) for Natural Language Processing, and VGG networks (Simonyan &
Zisserman, 2015) for image recognition. In comparison, our technique is model
agnostic, both w.r.t. the oracle and the interpretable model.

(c) Although instance re-weighting techniques have been investigated as a means of
transfer learning7, their objective is to perform effective learning in situations
where the data distribution available in the source task/domain is different from
that in the target task/domain (Liao, Xue, & Carin, 2005; W. Dai, Yang, Xue,
& Yu, 2007; Kamishima, Hamasaki, & Akaho, 2009). In our case, these two
distributions, as provided, are identical; we choose to use a different training
distribution in the interest of improving accuracy.

2.3 Workflow

Figure 2 compares (a) a standard workflow to our (b) model building workflow. The arrows
represent flow of information. In the standard setup, a model training algorithm, A, accepts
training data and produces a model that maximizes some pre-defined prediction accuracy
metric. Our workflow adds two new components - the adaptive sampling technique, B,
and an oracle, C. The oracle provides information to the sampling technique, that enables
it to identify a potentially “better” sample from the training data for input to algorithm
A. Here, a “better” sample is the one that leads A to produce a model with the higher
accuracy (measured on a held-out dataset), compared to training on the provided data
as-is. Determining this sample is an iterative process; at each iteration, B modifies the
sample based on the current accuracy of the model from A. The information from the
oracle is conveyed to the sampling technique only once, before the beginning of the iterative
interaction between A and B.

7. We specifically mention this since instance re-weighting maybe seen as a form of sampling.
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Figure 2: Modified workflow. Arrows denote flow of information. Our sampler B receives
uncertainty information from the oracle C, which it then uses to iteratively learn
a distribution, using the performance of A as its objective function.

2.4 Terminology and Notation

We first define the notion of model size since it is critical for subsequent discussions. Model
size is a model parameter with the following properties:

1. model size ∝ bias−1

2. The interpretability of a model decreases with increasing model size.

Only the first criteria above is required for using our technique. The second criteria reflects
the usefulness of the technique for interpretability.

It must be noted that the notion of model size is subjective. Consider a GBM with
DTs as base classifiers: here, the depth of the individual trees, or the number of trees, or
both collectively may be seen as representing size. Even for a given notion of size, the value
up to which a model is considered interpretable may be a matter of opinion. For example,
some might consider a DT with depth = 15 to be interpretable, while some might decide
depth = 10 to be the limit for interpretability. However, as long as the notion of size satisfies
the criteria above, the discussion in this paper applies.

We now introduce the notations used:

1. We denote a dataset, D, by a set of instance-label pairs, i.e., D = {(x1, y1), (x2, y2), ..., (xN , yN )},
where xi is the feature vector representing an instance and yi is its corresponding label.

Sometimes, we use multisets, when instance-label pairs may be repeated. Such usage
is explicitly called out.

2. While we have referred earlier to the joint distribution of instances and labels, e.g.,
p(X,Y ) in Equation 2, this is understood to represent the dataset that we are actually
given, in the form of a finite number of instance-label pairs.
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3. We use the term original, as in original distribution or original data to denote the data
that we are given. This is in contrast with samples we generate. The distribution of
test datasets or held-out datasets is the original distribution for all models discussed
in this paper.

4. The terms accuracy() and trainF ,f () are overloaded to accept a dataset as input in
lieu of a distribution:

• accuracy(M,D) denotes the accuracy of model M with the dataset D as the test
set.

• trainF ,f (D, η) denotes a specific training algorithm f , for a model family F , that
accepts as input a dataset D, and trains a model of size η.

5. The terms pdf and pmf denote probability density function and probability mass func-
tion respectively. The term “probability distribution” may refer to either, and is made
clear by the context.

Next, we look at our methodology.

3. Methodology

We describe our methodology in this section. We begin with the intuition, and then look
at the algorithm and various implementation details.

3.1 Intuition

Our intuition here builds upon certain observations from our previous work (Ghose & Ravin-
dran, 2020). There, to find an optimal training distribution:

1. We learn a specific form of decision trees we refer to as density trees, to capture
neighborhood information in the input space.

2. A node sampling distribution, defined over both internal nodes and leaves, is iter-
atively learned in the following manner: nodes are sampled based on the current
distribution, and then data is sampled from within them. A classifier trained on this
data is evaluated on a held-out set. This accuracy is used to modify the node sampling
distribution, so it leads to greater accuracy in the next iteration.

In our analysis of the results, we had observed that the learned distribution uses nodes
from different depths. Since different depths represent varying levels of information, and
therefore, uncertainty, about the location of class boundaries - information increases from
the root towards the leaves - this indicates that a sampling distribution using this informa-
tion necessarily needs to be learned as opposed to using simple heuristics like only sampling
from regions of high uncertainty. This observation informs the key intuition behind this
work: we view the problem of sampling training data as one of learning a distribution over
uncertainty scores provided by an oracle. Of course, we validate this assumption empirically
in Section 4.2.

We now discuss the various algorithmic details.
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3.2 Measuring Uncertainty

We begin by discussing the measurement of uncertainty, since our technique critically de-
pends on this quantity. We denote the uncertainty of prediction by a model M on an
instance x by uM (x), where uM (x) ∈ [0, 1]. A good uncertainty metric for our application
(a) should not exclusively consider the confidence of the predicted label (b) should result
in a high value even if the model is uncertain between two labels in a multi-class problem.

The margin uncertainty (Scheffer, Decomain, & Wrobel, 2001) metric satisfies these
criteria. This is computed as:

uM (x)← 1− (pC1 − pC2) (5)

Here, pC1 and pC2 denote the probabilities of the most confident and next most confident
classes, provided by model M for instance x. Lower differences between the top two prob-
abilities lead to higher scores for this metric. We calibrate (J. C. Platt, 1999) our oracles
for reliable probability estimates.

See Section A.4 for a discussion on suitability of other uncertainty metrics.

3.3 Sampling based on Uncertainty

Since we want to learn a distribution over uncertainties, p(uM (x)) needs to have a flexible
representation. A desiderata for such a distribution is:

1. Since we want to avoid any assumptions, we want the distribution to be able to assume
an arbitrary “shape”, unlike, say using a normal distribution that is unimodal, and
the mode is centered.

2. It should be defined over the bounded interval [0, 1] since uM (x) ∈ [0, 1].

3. A fixed set of parameters is preferred over a conditional parameter space. An example
of a distribution with a conditional parameter space is the popular Gaussian Mixture
Model (GMM), where the number of parameters is determined by the number of
components.

We list this requirement since the parameters of this distribution are to be learned
via optimization, and there are many more optimizers that can handle fixed than
conditional parameter spaces. This affords us the flexibility of exploring a much
wider variety of optimizers. Further discussed in Section 3.5.

The Infinite Beta Mixture Model (IBMM) (Ghose & Ravindran, 2020) satisfies the above
requirements.

The IBMM is a Dirichlet Process (DP) mixture model with Beta components. It may
be seen as a variation of the Infinite Gaussian Mixture Model (Rasmussen, 1999). A mix-
ture model allows us to model an arbitrary distribution, satisfying our first requirement.
Using Beta components enables support for a bounded interval - this satisfies our second
requirement. The DP is described by the concentration parameter α ∈ R>0, which identifies
the components that have at least one point assigned to them8. The shape parameters of

8. In theory, the DP has an infinite number of components, with only a finite number of them actually
representing instances in the data
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all the Beta components are drawn from shared prior distributions, which themselves are
Beta distributions. Use of a DP, with shared priors, gives us a fixed parameter space; this
satisfies our third requirement.

This is how we sample Ns points, from a dataset D, using an oracle MO:

1. Determine partitioning over the Ns points induced by the DP . We use Blackwell-
MacQueen sampling (Blackwell & MacQueen, 1973) for this. Let’s assume this step
produces k partitions {c1, c2, ..., ck} and quantities ni ∈ N where

∑k
i=1 ni = N . Here,

ni denotes the number of points that belong to partition ci.

2. We determine the Beta(Ai, Bi) component for each ci. We assume the priors for
the Beta parameters are also represented by Beta distributions, i.e., Ai ∼ scale ×
Beta(a, b) and Bi ∼ scale × Beta(a′, b′). Since samples from the standard Beta are
within [0, 1], we use a parameter scale as a common multiplier to obtain a wide range
of Ai, Bi.

Thus we have exactly two prior Beta distributions associated with our IBMM. Here,
a, b, a′, b′ are positive reals.

3. Repeat for each ci: for each instance-label pair (xj , yj) in our training dataset, we cal-
culate the oracle uncertainty score, uMO

(xj). We then calculate pj = Beta(uMO
(xj)|Ai, Bi).

We scale the probabilities across instances to sum to 1. These quantities are used as
sampling probabilities for various (xj , yj), and ni points are sampled with replacement
based on them.

The parameters for the IBMM are collectively denoted by Ψ = {α, a, b, a′, b′}. The best
values for Ψ are learned via an optimization process detailed in Section 3.4.

The above procedure is summarized in Algorithm 1. Note that temp andD′ are multisets
in the algorithm, since we sample with replacement. Accordingly, line 13 uses the multiset
sum, ]: if (xi, yi) occurs m times in D′ and n times within temp, then D′ ← D′ ] temp
has m+ n occurrences of (xi, yi).

3.4 Learning Interpretable Models using an Oracle

We tie together the various individual pieces in this section. We have already discussed the
parameters Ψ for the IBMM. Our technique uses two additional parameters:

1. po ∈ [0, 1], proportion of instance-label pairs from the original training data. This
parameter serves two purposes: (1) it acts as a “shortcut” for the optimizer to sample
from the original distribution, as opposed to determining the right Ψ to do so (2) the
relationship of po and model size enables us to study the correlation between model
size and effectiveness of the original distribution during training.

2. Ns ∈ N, sample size. Since the sample size can have a significant effect on model
performance, we allow the optimizer to determine its best value. Ns is constrained to
be at least as large as what is needed for statistically significant results.

The complete set of parameters is denoted by Φ = {Ψ, Ns, po}, where the IBMM pa-
rameters are denoted by Ψ = {α, a, b, a′, b′}.
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Algorithm 1: Sample based on uncertainties and Ψ

Data: Sample size Ns, oracle MO, dataset D = {(x1, y1), (x2, y2), ..., (xN , yN )},
IBMM parameters Ψ = {α, a, b, a′, b′}

Result: Sample D′, where |D′| = Ns

1 D′ = {} // assumed to be a multiset

2 {(c1, n1), (c2, n2), ..., (ck, nk)} ← partition Ns using the DP // Here
∑k

i=1 ni = Ns.

3 for i← 1 to k do
4 Ai ∼ scale×Beta(a, b)
5 Bi ∼ scale×Beta(a′, b′)
6 for j ← 1 to N do
7 pj ← Beta(uMO

(xj);Ai, Bi)
8 end
9 for j ← 1 to N do

10 p′j ← c · pj , where c = 1/
∑N

j=1 pj // normalize the probabilities

11 end
12 temp← sample with replacement ni instance-label pairs based on p′j // assumed

to be a multiset

13 D′ ← D′ ] temp // ] is the multiset sum

14 end
15 return D′

Our technique randomly initializes Φ, creates a sample based on Algorithm 1 and the
original training data (based on po), learns an interpretable model of size η on this sample,
and evaluates it on a validation set. Based on the validation score, an optimizer modifies
the parameters Φ, and repeats the process. Our stopping criteria is an iteration budget T .
Algorithm 2 lists these steps.

Some details to note in Algorithm 2:

1. The optimizer is represented by the function call suggest() which takes as input all
past parameter values and validation scores. suggest() denotes a generic optimizer;
not all optimizers require this extent of historical information.

2. While the training algorithm for the oracle, trainO,h() is taken as input, a pre-
constructed oracle MO may also be used. This would eliminate the oracle training
step in line 2.

3. accuracy() on the validation data, Dval, serves as both the objective and fitness
function.

4. Evaluation on the test set, Dtest is done only once, in line 16, with the model that
produces the best validation score.

5. Since we sample with replacement, both temporary datasets Do and Du, procured
from uniformly sampling the original training data and sampling based on uncertain-
ties respectively, are multisets. Accordingly, line 9 uses the multiset sum operator ]
to combine them.

13
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Algorithm 2: Learning interpretable model using oracle

Data: Dataset D, model size η, trainO,h(), trainI,g(), iterations T
Result: Optimal parameters Φ∗, test set accuracy stest at Φ∗, and interpretable

model M∗ at Φ∗

1 Create splits Dtrain, Dval, Dtest from D, stratified wrt labels
2 MO ← trainO,h(Dtrain, ∗)
3 for t← 1 to T do
4 Φt ← suggest(s1, ...st−1,Φ1, ...,Φt−1) // randomly initialize at t = 1

// Note: Φt = {Ψt, Ns,t, po,t} where Ψt = {αt, at, bt, a
′
t, b
′
t}.

5 No ← po,t ×Ns,t

6 Nu ← Ns t −No

7 Do ← uniformly sample, with replacement, No points from Dtrain

8 Du ← sample Nu points from Dtrain using Algorithm 1 with input
(Nu,MO, Dtrain,Ψt).

9 Ds ← Do ]Du // Do, Du are assumed to be multisets

10 Mt ← trainI,g(Ds, η)
11 st ← accuracy(Mt, Dval)

12 end
13 t∗ ← arg maxt {s1, s2, ..., sT−1, sT }
14 Φ∗ ← Φt∗

15 M∗ ←Mt∗

16 stest ← accuracy(M∗, Dtest)
17 return Φ∗, stest, M

∗

6. Since the validation score st (line 11) needs to be reliable, in our implementation we
repeat lines 7-10 thrice and use the averaged validation score as st.

7. Class imbalance is accounted for in our implementation when training model Mt in line
10. We either balance the data by sampling (this is the case with a Linear Probability
Model), or an appropriate cost function is used to simulate balanced classes (this is
the case with DTs and GBMs).

It is important to note here that Dval and Dtest are not modified by our algorithm in
any way, and therefore st and stest measure the accuracy on the original distribution.

Algorithm 2 presents the core contribution of the paper. Quite significantly, the opti-
mization loop has a fixed set of seven variables, irrespective of the dimensionality of the
data; this makes our technique practical for use on real-world datasets.

Clearly, the choice of the optimizer suggest() is crucial - we discuss this next.

3.5 Choice of Optimizer

We begin by listing below the challenges faced by our optimizer:

1. Black-box objective function: Our objective function is accuracy(), which de-
pends on the interpretable model produced by trainI,g() in Algorithm 2. Since

14
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we want our technique to be model agnostic, nothing is assumed about the form
of trainI,g(). This effectively makes our objective a black-box function.

2. Noisy objective function: The interpretable model is trained on a sample based
on the current parameters Φt. This implies two models constructed for the same Φt

may not be identical. There might be other sources of noise intrinsic to the learning
algorithm too, e.g., local search used for training.

3. Expensive objective function: Every evaluation of the objective function requires
an interpretable model to be trained, which is expensive. We want our optimizer to
be conservative in its calls to the objective function.

We use Bayesian Optimization (BO) to implement suggest(). BOs build their own
model of the response surface as a function of the optimization variables, over multiple
iterations. They optimize this surrogate objective. This strategy enables them to work
with black-box objective functions, satisfying our first requirement. BOs explicitly quantify
the uncertainty9 of the response surface model, by using appropriate representations such as
Gaussian Processes (GP) or Kernel Density Estimators (KDE); this helps them to account
for reasonable amounts of noise, which satisfies our second requirement. The evolving
response surface (over iterations) allows BOs to balance exploitation and exploration to
make well-informed decisions about the best point on which to next evaluate the objective
function - making it conservative in its calls to accuracy(), and therefore trainI,g(). This
satisfies our third requirement. See reference Brochu, Cora, and de Freitas (2010) for details.

While there exist other promising candidates for optimization, e.g., evolutionary al-
gorithms such as Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen
& Ostermeier, 2001; Hansen & Kern, 2004) or bandit-based algorithms such as Parallel
Optimistic Optimization (Grill, Valko, Munos, & Munos, 2015), we choose BO because of
their continued success for hyperparameter optimization, a domain with similar optimization
challenges (Feurer & Hutter, 2019; Turner et al., 2021).

Among BO techniques, of which there are many today, e.g., (Hutter, Hoos, & Leyton-
Brown, 2011; Bergstra, Bardenet, Bengio, & Kégl, 2011; Malkomes & Garnett, 2018; Z. Dai,
Yu, Low, & Jaillet, 2019), we use the Tree Structured Parzen Estimator (TPE) algorithm
(Bergstra et al., 2011) since it scales linearly with the number of evaluations10 and has a
popular and mature library: Hyperopt (Bergstra, Yamins, & Cox, 2013).

We note here that TPE supports conditional parameter spaces, which would have al-
lowed us to use a finite mixture model such as GMMs, setting the number of mixture
components as the top level optimization variable. However, our design choice of a fixed
parameter space effectively makes our technique a framework: any optimizer that satisfies
the above criteria may be used. This enables us to make Algorithm 2 faster and better as
newer optimizers become available. For example, any of the BO algorithms from the black-
box optimization challenge, NeurIPS2020 (Turner et al., 2021), may be used to implement
suggest() in Algorithm 2.

9. The connotation of this term here is different from what we have seen before: it denotes variance in the
response surface model.

10. The runtime complexity of a naive BO algorithm is cubic in the number of evaluations (Shahriari,
Swersky, Wang, Adams, & de Freitas, 2016).
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3.6 Smoothing the Optimization Landscape

A final but key consideration in our optimization is to make it easier to discover the global
maximum: Φ∗ in Algorithm 2. Since BOs model the response surface of the actual objec-
tive function using a finite number of evaluations (st in Algorithm 2), a certain degree of
smoothness is assumed (Shahriari et al., 2016; Brochu et al., 2010).

Here, the optimization variables Φt influence the sampling in Algorithm 1, which di-
rectly affects the score st that the BO consumes. Empirically, we have observed that the
distribution of uncertainty scores produced by an oracle do not always form a smooth dis-
tribution. Consequently, neighboring values of Φ may pick drastically different samples
leading to large differences in st.

To address this, we “flatten” the distribution11 within [0, 1]. Our transformation is sim-
ple: we divide the interval [0, 1] into B bins, and map approximately |Dtrain|/B uncertainty
scores to each bin, while maintaining order between the original and mapped scores. Within
a bin, the mapped scores are linearly spread across its range. This distributes the mapped
scores approximately uniformly in the range [0, 1]. The algorithm is detailed in Section A.5.

The alternative to flattening is to identify a suitable parameter for the BO algorithm,
e.g., a suitable kernel for Gaussian Process based BO. However, this introduces additional
hyperparameters; hence we prefer flattening.

Figure 3 visualizes the process of flattening. The original and modified uncertainty
distributions for the datasets Sensorless and covtype.binary are shown in Figure 3(a)
and 3(b) respectively.

(b) covtype.binary, GBM(a) Sensorless, GBM

Figure 3: Example of curve-flattening, for datasets (a) Sensorless and (b)
covtype.binary. The uncertainty scores shown are obtained using the
GBM oracle.

While Sensorless appears to have a non-smooth distribution, and flattening here might
help, this seems redundant for covtype.binary. However, since this step is computationally

11. Distribution transformations have a long history in statistics, e.g., power transforms like the Box-Cox
(Box & Cox, 1964) and Yeo-Johnson (Yeo & Johnson, 2000) transforms. Within ML, Batch Normal-
ization (Ioffe & Szegedy, 2015) is a popular example of a distribution transformation applied to a loss
landscape (Santurkar, Tsipras, Ilyas, & Madry, 2018).
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inexpensive, we perform this for all our experiments, saving us the effort of assessing its
need. The effect of flattening in our experiments is discussed in Section 5.

Our transformation is invertible, which is useful in analyzing the observations from our
experiments. Note however, it is not differentiable because of the discontinuities at the
bin-boundaries; we also don’t require this property.

The transformation affects line 7 in Algorithm 1. Instead of sampling based on the
actual oracle uncertainty scores:

pj ← Beta(uMO
(xj);Ai, Bi) (6)

we sample based on the transformed uncertainty scores, u′MO
(xj):

pj ← Beta(u′MO
(xj);Ai, Bi) (7)

The use of the transformation is optional, since Algorithm 2 does not critically depend upon
it, but makes it robust (discussed in Section 5).

This concludes our discussion of algorithmic details. In summary, we require seven
parameters Φ = {Ψ, Ns, po}, where Ψ = {α, a, b, a′, b′}. Hyperparameters are discussed in
Section 4.1.5. Our experimental validation of the technique is discussed next.

4. Experiments

We now look at extensive evaluation of our technique. Our experiments maybe categorized
into the following types:

1. Validation, Section 4.1: this set of experiments exhibit statistically significant im-
provements across multiple datasets, using different models and oracles (Section 4.1.6).
Various properties of the learned distributions are analyzed (Section 4.1.7). The re-
lationship between model capacity and the efficacy of our technique is also discussed
(Section 4.1.8).

2. Comparisons, Section 4.2: here we compare the improvements produced by our
technique with (a) a supervised version of uncertainty sampling and (b) using density
trees.

3. Additional applications, Section 4.3: fundamentally, our technique learns a sam-
pling distribution that leads to effective training. This can be used as a tool for the
following interesting applications - (a) different feature representations may be used
across the interpretable model and the oracle, e.g., a DT as the interpretable model
with n-grams as input, and a Gated Recurrent Unit the oracle, that operates on a
sequence of tokens, (b) a minimal sample for effective learning maybe identified using
our technique and (c) a multivariate notion of model size may be used.

The section on validation experiments is the most comprehensive, establishing various as-
pects of our technique.
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4.1 Validation

To empirically validate our technique we consider different real-world datasets, on which we
train Linear Probability Models (LPM) and DTs, using Gradient Boosted Models (GBM)
and Random Forests (RF) as oracles. The experimental setup is described in terms of the
data, models and oracles, metrics used and the optimization search space explored.

4.1.1 Data

We use 13 real-world datasets to validate our technique. Table 1 lists relevant details. These
are picked to vary in their dimensions, number of labels and label distribution, enabling a
broad validation of our technique. Although we use the version of data available on the
LIBSVM website (Chang & Lin, 2011), we mention their original source in Table 1. 10000
instances from each dataset are used. We use a train : val : test split ratio of 60 : 20 : 20 to
create Dtrain, Dval and Dtest in all our experiments (line 1, Algorithm 2). The data splits
are stratified wrt class labels.

In terms of the label distribution, we are interested in knowing whether a dataset is
balanced wrt labels. We quantify this with the “Label Entropy”, which is computed for a
dataset with N instances and C labels in the the following manner:

Label Entropy =
∑

j∈{1,2,...,C}

−pj logC pj (8)

Here, pj =
|{xi|yi = j}|

N

Label Entropy ∈ [0, 1], where values close to 1 denote the dataset is nearly balanced, and
values close to 0 represent relative imbalance.

4.1.2 Models

For interpretable models I, we consider the following model families:

1. Linear Probability Model (LPM) (Mood, 2010): This is a linear classifier. We use the
commonly accepted notion of model size here: the number of terms in the model, i.e.,
features from the original data, with non-zero coefficients. We use the Least Angle
Regression (Efron, Hastie, Johnstone, & Tibshirani, 2004) algorithm, that grows the
model one term at a time, to enforce the size constraint. We use our own implemen-
tation based on the scikit-learn library (Pedregosa et al., 2011).

Since LPMs inherently handle only binary class data, for a multiclass problem, we
construct a one-vs-rest model, comprising of as many binary classifiers as there are
distinct labels. The given size is enforced for each binary classifier. For instance,
consider the dataset letter in Table 1, with 26 classes. A model size of 10 implies we
construct 26 binary classifiers, each with 10 terms. We have not used the more com-
mon Logistic Regression classifier because: (1) from the perspective of interpretability,
LPMs provide a better sense of variable importance (Mood, 2010) (2) the technique
is well validated for the case of linear classification by any standard linear classifier.
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Table 1: We use the following datasets available on the LIBSVM website (Chang & Lin,
2011). Their original source is mentioned in the “Description” column. 10000
instances from each dataset are used. A train : val : test split ratio of 60 : 20 : 20
is used for Dtrain, Dval and Dtest in Algorithm 2. The splits are stratified wrt
labels.

S.No. Dataset Dimensions # Classes Label Entropy Description

1 cod-rna 8 2 0.92 Predict presence of non-coding RNA common
to a pair of RNA sequences, based on indi-
vidual sequence properties and their similarity
(Uzilov, Keegan, & Mathews, 2006).

2 ijcnn1 22 2 0.46 Time series data produced by an internal com-
bustion engine is used to predict normal en-
gine firings vs misfirings (Prokhorov, 2001).
Transformations as in (Chang & Lin, 2001).

3 higgs 28 2 1.00 Predict if a particle collision produces Higgs
bosons or not, based on collision properties
(Baldi, Sadowski, & Whiteson, 2014).

4 covtype.binary 54 2 1.00 Modification of the covtype dataset (see row
12), where classes are divided into two groups
(Collobert, Bengio, & Bengio, 2002).

5 phishing 68 2 0.99 Various website features are used to predict if
the website is a phishing website (Mohammad,
Thabtah, & McCluskey, 2012). Transforma-
tions used as in (Juan, Zhuang, Chin, & Lin,
2016)

6 a1a 123 2 0.80 Predict whether a person makes over 50K a
year, based on census data variables (Dua &
Graff, 2017). Transformations as in (J. Platt,
1998).

7 pendigits 16 10 1.00 Classify handwritten digit samples into the
digits 0-9. (Alimoglu & Alpaydin, 1996; Dua
& Graff, 2017).

8 letter 16 26 1.00 Images of the capital letters A-Z were pro-
duced by random distortion of these charac-
ters from 20 fonts. The task is to classify these
character images as one of the original let-
ters (Michie, Spiegelhalter, Taylor, & Camp-
bell, 1995). Transformations as in (Hsu & Lin,
2002).

9 Sensorless 48 11 1.00 Based on phase current measurements of an
electric motor, predict different error condi-
tions (Paschke et al., 2013). We use the trans-
formations from (C.-C. Wang et al., 2018).

10 senseit aco 50 3 0.95 Predict vehicle type using acoustic data gath-
ered by a sensor network (Duarte & Hu, 2004).

11 senseit sei 50 3 0.94 Predict vehicle type using seismic data gath-
ered by a sensor network (Duarte & Hu, 2004).

12 covtype 54 7 0.62 Predict forest cover type from cartographic
variables (Dean & Blackard, 1998; Dua &
Graff, 2017).

13 connect-4 126 3 0.77 Predict if the first player wins, loses or draws,
based on board positions of the board game
Connect Four (Dua & Graff, 2017).
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Sizes: For a dataset with dimensionality d, we construct models of sizes:
{1, 2, ...,min(d, 15)}. We end up with sizes less than 15 only for the dataset cod-rna,
which has d = 8. All other datasets have d > 15 (see Table 1).

2. Decision Trees (DT): We use the implementation of CART in the scikit-learn library.
Our notion of size here is the depth of the tree.

Sizes: For a dataset, we first learn a tree (with no size constraints) with the highest
F1-score (macro) using standard 5−fold cross-validation. We refer to this as the
optimal tree Topt, and its depth is denoted by depth(Topt). We then experiment up
to a model size of min(depth(Topt), 15). This is controlled by setting the values of
CART’s max depth parameter to:
{1, 2, ...,min(depth(Topt), 15)}.

Stopping early makes sense since the model is saturated in its learning from the data;
changing the input distribution is not helpful beyond this point.

Note that while our notion of size is the actual depth of the tree produced, the
parameter we vary is max depth; this is because decision tree libraries do not al-
low specification of an exact tree depth12. This is important to remember since we
might not see actual tree depths take all values in {1, 2, ...,min(depth(Topt), 15)},
e.g., max depth = 5 might give us a tree with depth = 5, max depth = 6 might
also result in a tree with depth = 5, but max depth = 7 might give us a tree with
depth = 7. We report improvements at actual depths, although the parameter con-
trolled is max depth.

4.1.3 Oracles

We want our oracle models O to be fairly accurate, so that the derived uncertainty infor-
mation is reliable. Hence we pick the following model families:

1. Gradient Boosted Models (GBM): We used a gradient boosting model with DTs as our
base classifiers. The LightGBM library (Ke et al., 2017) is used in our experiments.
Effective parameters were determined using a validation set. NOTE: This is not Dval

from Algorithm 2, since that would constitute data leakage. A sample, stratified by
labels, from within Dtrain was held out for learning good GBM parameters.

2. Random Forests (RF): We used the implementation available in scikit-learn. Param-
eters were learned using 5-fold cross-validation over Dtrain.

The above oracles were calibrated (J. C. Platt, 1999) for reliable probability estimates.

4.1.4 Metrics

We measure two quantities - improvements in model accuracy and their statistical signifi-
cance. These are the metrics we use:

12. The training phase may be declared complete before growing till max depth, based on other settings like
leaf purity, minimum number of samples required at a leaf, etc.
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1. To measure accuracy() as in Equation 2 or Algorithm 2, our metric of choice is the F1
(macro) score, evaluated on Dtest. We use this since it accounts for class imbalance,
e.g., it doesn’t allow good results for a majority class to eclipse poor results for a
minority class.

To measure the improvements obtained from our technique, we record the percentage
relative improvement in the F1 score compared to the baseline of training the model
on the original distribution:

δF1 =
100× (F1new − F1baseline)

F1baseline
(9)

Since the original distribution is part of the optimization search space, i.e., when
po = 1, the lowest improvement we report is 0%, i.e., δF1 ∈ [0,∞).

All reported values of δF1 represent averaging over three runs of Algorithm 2, where
we average the baseline and new scores first, and then calculate the improvement. In
other words, if the runs are indexed by i, F1new and F1baseline are replaced by F1new =∑3

i=1 F1new,i/3 and F1baseline =
∑3

i=1 F1baseline,i/3 respectively, in Equation 9.

We take an average of the scores first since F1baseline can be a small value, especially
at smaller model sizes, and being in the denominator, slight changes to it across runs
can produce outsize differences in the per-run δF1 scores.

2. To measure statistical significance of our results we use the Wilcoxon signed-rank test,
where the paired set of samples are F1baseline and F1new scores (from Equation 9)
for a dataset. The p-value is reported. This test is separately performed for different
model sizes.

4.1.5 Optimization Search Space

The optimizer we use, TPE, requires box constraints. Here we specify our search space for
the optimization variables, Φ in Algorithm 2:

1. po: We want to allow the algorithm to pick an arbitrary fraction of samples from the
original data; we set po ∈ [0, 1].

2. Ns: We set Ns ∈ [400, 10000]. The lower bound ensures we have statistically signifi-
cant results. The upper bound is set to a reasonably large value.

3. {a, b, a′, b′}: Each of these parameters are allowed a range [0.1, 10] to allow for a wide
range of shapes for the component Beta distributions.

4. scale: We fix scale = 10000 for our experiments, to allow for Ai and Bi to model
skewed distributions where shape parameter large values might be required. For small
values, the algorithm adapts by learning the appropriate {a, b, a′, b′}.

5. α: For a DP, α ∈ R>0. We use a lower bound of 0.1.

To determine the upper bound, we rely on the following empirical relationship (Ohlssen,
Sharples, & Spiegelhalter, 2007) between the number of components k and α:

E[k|α] ≈ 5α+ 2 (10)
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We empirically estimated a fairly inclusive upper bound on the number of components
to be 500, which provides us the α upper bound of 99.6. Thus, we use α ∈ [0.1, 99.6].

We draw a sample from the IBMM using Blackwell-MacQueen sampling (Blackwell
& MacQueen, 1973).

We use a flattening transformation (discussed in Section 3.6) on the original un-
certainty distributions, with a fixed number of 20 bins. However, all visualizations
of distributions in the following sections were prepared after performing an inverse
transformation; hence, in studying them, it might be convenient to assume that no
transformation was applied.

Hyperparameters: In theory, the box constraints and the iteration budget required
by the optimizer constitute our hyperparameters, which may be tuned for a specific task.
However, as we note above, we don’t need to estimate a range for po and reasonable defaults
may be applied to Ns, {a, b, a′, b′}, scale and α. This results in the practical convenience
of having to set the value for only a single hyperparameter: T , the iteration budget. This
was set to T = 1000 for LPMs and T = 3000 for DTs based on limited search. Since
the LPMs we use construct multiple one-vs-rest classifiers, higher iteration budgets are
computationally expensive to use.

This completes our discussion of the experimental setup; we present our observations
next.

4.1.6 Improvements in Accuracy

Figure 4 shows the improvements for different combinations of interpretable and oracle
models, {LPM,DT}× {GBM,RF}. The model size is on the x-axis, and is normalized to
be in [0, 1], so that performance across datasets may be conveniently compared in the same
plot.

For LPMs, the model sizes for a dataset, i.e., number of non-zero terms, are multiplied
by 1/min(d, 15), where d is the dimensionality of the data. For DTs, the model sizes are
multiplied by 1/min(depth(Topt), 15). All δF1 values are averaged over three runs, in the
manner described in Section 4.1.4.

Table 2 enumerates the observations corresponding to the plots in Figure 4. The column
model ora represents the model and oracle combination used. For example, dt gbm implies
DT was used as the model and GBM as an oracle.

We observe that the oracle based approach indeed works on a variety of datasets, across
different combinations of interpretable and oracle models. In some cases, such as the dataset
Sensorless, for the LPM and RF combination, improvements are as high as δF1 =
248.12%. The general trend seems to be that δF1 decreases as model sizes increase, with
eventually δF1 ≈ 0. This decrease seems to be faster for DT s, which makes intuitive sense
given that a unit increase in size for a DT adds more representational power (a layer of
nodes) than for an LPM (another term), making it harder to beat the baseline performance
of DTs.

This decrease empirically verifies the property expressed by Equations 3 and 4.
We note that δF1 does not strictly monotonically decrease for all datasets, possibly due

to the optimization terminating at a local maxima, e.g., in Table 2 see the entry for letter,
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(a) (b)

(c) (d)

(a)

Figure 4: For different combinations of models and oracles: {LPM,DT} × {GBM,RF},
these plots show improvements, δF1, seen for different model sizes and data.
Table 2 shows the corresponding improvement scores.

lpm rf, size = 2 (improvement = 67.06%) and size = 3 (improvement = 71.08%). But it
largely appears to follow the general trend of decrease even in these cases.

The statistical significance of the difference between F1baseline and corresponding F1new
scores were verified using the one-sided version of the paired Wilcoxon signed-rank test -
this is detailed in Section A.6.

Before we conclude this section, we present an additional way to visualize improvements:
create a correspondence of model sizes, without and with our technique, for the same
accuracy. See Figure 5 as an example. The point (12, 2) for senseit aco implies that the
accuracy of a LPM with 2 non-zero terms produced by our technique equals, or is greater
than, the accuracy of a baseline LPM with 12 non-zero terms. The model size on the y-
axis is the median of three runs. We refer to such a plot as the compaction profile for a
model-oracle combination. See Section A.8 for more compaction profiles.
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Table 2: This table shows the improvement, δF1, over the averaged baseline and improved scores
across three runs. This is shown for different combinations of models and oracles:
{LPM,DT} × {GBM,RF}. The best improvement for a model size and oracle is in-
dicated in bold

dataset model ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cod-rna lpm gbm 0.24 11.82 13.91 14.03 16.16 14.29 9.07 0.17 - - - - - - -
lpm rf 2.40 13.20 14.75 15.82 15.62 9.81 0.19 0.26 - - - - - - -

dt gbm 0.51 9.50 1.41 2.89 0.45 0.99 1.03 0.05 0.01 0.00 - - - - -
dt rf 0.67 7.95 2.08 2.39 0.19 0.23 0.16 0.68 0.31 0.00 - - - - -

ijcnn1 lpm gbm 0.93 4.67 3.14 2.40 5.67 4.05 3.53 3.78 3.67 2.06 3.36 3.27 2.90 4.02 3.93
lpm rf 0.26 1.84 3.64 3.59 2.24 1.40 3.36 3.51 2.81 3.05 1.42 3.37 3.12 2.75 3.13

dt gbm 2.51 11.73 6.41 7.33 7.68 4.13 2.92 5.70 0.35 0.18 0.04 0.26 0.67 0.30 -
dt rf 4.26 14.40 11.41 9.18 7.98 6.34 4.31 2.22 1.88 1.26 1.75 1.49 0.80 0.73 1.21

higgs lpm gbm 30.78 18.95 11.99 7.50 3.46 3.19 4.20 3.71 3.61 2.84 2.15 1.99 2.22 2.32 0.75
lpm rf 27.88 21.43 14.95 6.09 4.84 3.27 2.19 2.36 1.83 1.23 2.89 3.11 3.28 1.27 0.89

dt gbm 0.77 0.07 0.47 0.70 0.01 1.41 - - - - - - - - -
dt rf 3.99 0.95 2.07 1.66 1.66 1.32 - - - - - - - - -

covtype.binary lpm gbm 81.18 66.29 29.22 16.13 9.55 7.11 5.30 5.19 4.21 4.19 4.23 3.80 3.45 2.59 2.20
lpm rf 81.81 62.16 15.23 9.19 7.65 4.24 1.85 2.59 2.94 2.38 2.25 2.24 2.30 2.04 1.80

dt gbm 1.59 0.71 2.28 1.03 0.59 1.11 0.17 0.18 0.06 - - - - - -
dt rf 0.80 0.42 1.67 2.73 1.83 1.40 1.37 1.48 0.98 0.07 - 0.00 - - -

phishing lpm gbm 0.00 2.03 2.74 3.02 3.31 3.36 3.03 1.45 1.35 1.43 1.07 0.91 0.90 0.76 0.62
lpm rf 0.00 1.96 3.21 3.30 3.27 3.66 3.06 1.71 1.42 1.37 1.15 1.02 0.93 1.29 1.12

dt gbm 0.00 0.33 0.00 0.22 0.42 0.17 0.59 0.35 0.19 0.00 0.00 0.00 0.00 0.00 0.00
dt rf 0.00 0.91 0.56 0.72 0.48 0.07 0.14 0.32 0.00 0.00 0.00 0.11 0.06 0.02 0.00

a1a lpm gbm 0.00 2.86 6.88 8.81 9.40 7.80 8.59 9.17 8.73 7.79 6.95 6.47 4.29 5.27 4.13
lpm rf 0.00 3.58 8.48 10.13 10.42 8.89 8.91 9.79 8.65 9.03 7.93 7.57 6.04 6.82 6.42

dt gbm 0.02 6.24 1.90 4.16 3.29 2.18 0.13 0.20 0.27 - - - - - -
dt rf 0.00 6.17 3.37 5.04 4.23 5.89 5.72 6.85 7.08 5.06 3.02 2.94 - - 3.16

pendigits lpm gbm 55.28 24.79 19.76 9.17 10.11 7.00 5.44 1.88 2.49 2.05 2.27 3.00 3.05 3.42 1.91
lpm rf 52.08 26.43 18.69 5.64 7.38 5.92 6.92 1.40 3.22 2.57 2.01 1.67 1.91 1.96 2.66

dt gbm 12.94 6.50 3.66 12.59 5.86 4.04 1.77 0.31 0.02 0.07 0.00 - 0.00 0.00 -
dt rf 16.27 5.49 5.28 13.72 6.63 4.76 2.57 0.48 0.00 0.04 0.00 0.00 0.00 0.00 -

letter lpm gbm 51.26 49.14 62.29 34.39 33.64 19.75 21.00 14.19 16.08 14.09 15.54 13.50 15.88 14.70 11.68
lpm rf 61.85 67.06 71.68 24.31 39.12 24.79 18.53 22.40 22.87 21.02 20.21 21.64 17.99 17.65 16.75

dt gbm 3.55 12.97 24.10 33.77 28.24 13.33 10.03 2.85 3.31 1.99 1.04 0.52 0.05 0.00 0.00
dt rf 0.00 12.75 36.38 38.30 40.57 19.41 5.85 1.87 3.09 1.19 0.58 0.23 0.00 0.00 0.00

Sensorless lpm gbm 215.68 245.56 194.63 117.14 94.42 79.37 75.26 67.50 57.27 49.72 43.39 44.35 35.55 39.70 38.71
lpm rf 248.12 235.13 151.32 122.50 93.19 77.13 75.06 68.10 69.37 64.62 69.18 61.36 69.95 80.24 87.07

dt gbm 0.02 42.49 81.85 52.37 19.33 10.00 3.29 2.02 1.18 0.69 0.41 0.06 0.00 0.00 -
dt rf 0.00 42.99 61.92 61.36 25.97 9.43 2.81 1.08 0.42 0.00 0.18 0.04 0.00 - 0.00

senseit aco lpm gbm 173.34 170.28 63.78 39.58 33.88 25.15 21.91 15.15 11.78 9.16 6.80 6.11 5.43 5.23 5.65
lpm rf 176.19 169.29 72.81 45.43 34.94 29.12 22.38 19.79 13.41 10.40 9.59 6.41 6.21 5.63 4.15

dt gbm 12.25 2.18 2.92 3.18 3.22 1.63 0.57 - - - - - - - -
dt rf 11.89 1.71 2.76 4.80 3.22 4.39 1.66 0.25 - - - - - - -

senseit sei lpm gbm 152.84 44.99 22.03 11.00 7.25 5.16 5.43 5.03 5.68 5.31 5.64 5.08 5.56 5.08 5.39
lpm rf 165.59 63.54 26.69 13.95 8.19 5.50 4.89 5.04 4.81 4.06 3.78 3.67 3.77 4.06 4.25

dt gbm 2.04 1.06 3.54 2.05 0.49 0.36 0.00 - - - - - - - -
dt rf 2.46 0.43 3.98 2.69 1.33 1.77 1.91 - - - - - - - -

covtype lpm gbm 42.93 42.99 19.04 3.86 2.93 3.83 6.01 3.81 5.80 6.38 9.68 6.85 4.22 8.91 3.86
lpm rf 27.67 47.49 11.85 8.15 8.28 10.34 8.93 13.25 11.11 10.85 9.44 6.81 10.65 15.72 12.34

dt gbm 146.18 99.02 51.83 12.79 5.68 7.12 6.35 4.93 3.68 0.00 5.02 0.97 0.00 0.00 0.00
dt rf 154.63 104.78 61.40 7.12 10.47 1.05 3.33 2.96 0.44 1.84 0.64 0.00 0.39 0.00 2.01

connect-4 lpm gbm 37.97 18.54 20.45 11.81 17.75 16.38 6.48 6.90 7.86 5.96 6.63 3.05 2.52 5.06 3.81
lpm rf 95.72 23.80 19.45 11.74 8.71 4.73 3.76 5.66 5.14 4.32 2.43 2.31 4.95 0.60 4.63

dt gbm 156.06 29.54 23.31 6.22 3.47 4.10 6.66 8.28 0.00 5.15 2.08 2.61 1.78 0.11 0.00
dt rf 177.05 20.63 19.53 18.35 15.63 14.00 4.48 3.04 4.06 2.43 3.33 0.39 1.00 0.32 0.42

4.1.7 Learned Distributions

It is also instructive to analyse the distributions we have learned: this includes both the
parameter po and the parameters for the IBMM Ψ = {α, a, b, a′, b′}.
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Figure 5: The compaction profile of LPM models using GBM as an oracle. A point (x, y)
denotes the minimum size y of a model obtained using our technique that is at
least as accurate as the baseline model of size x.

Figure 6 shows how po varies with normalized model size when the interpretable model is
DT and the oracle is (a) GBM or (b) RF. This plot ignores the datasets where the largest tree
depth explored was less than depth(Topt) - so we can compare distributions in size regimes
where our technique is effective against when it is not (recall, at sizes close to depth(Topt)
we expect δF1 ≈ 0). The datasets ignored are13: a1a, ijcnn1, covtype, connect-4.
Here, we clearly see po → 1 as model size increases, thus implying the training algorithm
tends to use more of the original distribution14. This observation is a key contribution
of this work, since it challenges the conventional wisdom that the training data must be
drawn from the same distribution as the test data, for effective learning. This reinforces a
similar observation from our previous work (Ghose & Ravindran, 2020).

We now consider the IBMM distributions over the uncertainty values. These are difficult
to concisely visualize since one IBMM is learned for each model size. Hence, we propose
the following plot that aggregates distributions across model sizes for a dataset:

1. We set a value for N ; the number of points to sample.

2. For a model size ηi, we sample ni points from its corresponding IBMM, where ni ∝
δF1i, the improvement seen at this size. For example, let’s say we have explored
two model sizes η1, η2, and these have led to improvements of δF11 = 10% and
δF12 = 20%, respectively. Then, n1 = 0.33N and n2 = 0.67N .

13. These datasets are easy to identify in Table 2: the ones where the last column(s) is neither ≈ 0 nor “-”.
14. In theory, the parameters Ψ could have been learned such that they mimic the original distribution,

but we hypothesize that it is easier for the optimizer to learn the appropriate value of one parameter po
as opposed to equivalent values of the multiple parameters Ψ. This is why we see the clear pattern in
Figure 6.
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(b) DT with oracle=RF

cod-rna higgs covtype.binary phishing pendigits letter Sensorless senseit_aco senseit_sei

Figure 6: These plot shows the effect of increasing model size on po, when the interpretable
model is DT. These plots strongly indicate that larger model sizes learn better
with the original distribution. Some datasets are ignored - see text for explana-
tion.

3. The various samples of sizes ni are pooled together and a Kernel Density Estimator
(KDE) fit on this data is visualized.

The KDE thus obtained is predominantly shaped by the distributions that resulted in high
δF1. For the case of the LPM these are visualized in Figure 7 for both oracles.

(a) (b)

Figure 7: The aggregated IBMMs are visualized for LPMs, when the oracle is a (a) GBM
or (b) RF. The corresponding plots for DTs are presented in Section A.7.

It is interesting to see that the optimal strategy, in general, turns out to be to sample
from both regions of low and high uncertainties.
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Going a step further we might wonder what the aggregated distribution would look like
if adjusted for the number of instances with a given uncertainty value. For example, we
might see a peak on the extreme right for a dataset in Figure 7 simply because most points
receive a high uncertainty score.

We use the following technique to visualize such an adjusted aggregate distribution:

1. We again pick N , the number of points to sample. Exactly like in the previous case:
we pool together samples from IBMMs for different model sizes, where the relative
sample sizes are decided by the respective δF1 scores. We fit a KDE to this data,
which we refer to as A.

2. We fit another KDE to the uncertainty values produced by the oracle for the training
data. Let’s call this B.

3. For K uniformly spaced values of uncertainty uk ∈ [0, 1], 1 ≤ k ≤ K, we cal-
culate the ratio pA(uk)/pB(uk), and plot a scaled version of it c · pA(uk)/pB(uk).
The scaling factor c is picked to transform the ratios into probability masses, i.e.,∑K

k=1 c · pA(uk)/pB(uk) = 1.

Essentially, we normalize the sampling probability pA(uk) at uk, with pB(uk), a quan-
tity representing the number of instances with uncertainty uk.

These plots are shown in Figure 8. The corresponding plots for the DT are shown in
Figure 23, Section A.7.

(a) (b)

Figure 8: Aggregated IBMMs, adjusted for the uncertainty distribution. These plots are
for the LPM, using a (a) GBM or (b) RF as an oracle. The corresponding plots
for DTs may be found in Section A.7.

While the plots in Figure 7 are indicative of the individual distributions they aggregate
(most of the individual distributions have similar shapes; see Figure 25 in Section A.9),
this is not true for the adjusted plots in Figure 8 - there are diverse variations that are
averaged out. We show some of them in Figure 9, for different datasets and model sizes,
for model = LPM, oracle = GBM . The size of the dots on the curve represent pB(uk) at
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Figure 9: Adjusted IBMMs for some model sizes and datasets, for model = LPM, oracle =
GBM . We observe that fairly different distributions may be learned across our
experiments.

the corresponding value of uk on the x-axis. These are intended to signify robustness of the
adjustment, since they occur in the denominator of the scaled ratios.

It is probably important to point out here that typical discussions of uncertainty sam-
pling, such as the classic version (Lewis & Gale, 1994), imply the non-adjusted distributions
shown in Figure 7.

4.1.8 Effect of Model Capacity

If we closely look at the improvements in Table 2, we would note that the improvements
for DTs diminish faster than LPMs, as model size increases. This naturally leads to the
question: how does model capacity influence improvements? This is difficult to answer in
general since (a) there isn’t a standard way to easily quantify capacity across model families,
and (b) the notion of model size is subjective. And while the LPM vs DT data indicates a
trend, we want to isolate this effect in a manner that is not affected by differences in the
model families.

To that end, we adopt the following approach: we use two different instances of GBMs,
where the notion of model size is the number of DTs in a GBM (or equivalently, the number
of boosting rounds), and their model capacities are decided by the maximum depth of the
constituent DTs; these are set to 2 and 5 for these GBM instances. We refer to these as the
GBM-2 and GBM-5 “pseudo model families” respectively, where we understand GBM-5 to
possess higher capacity than GBM-2. Since the training algorithms and model representa-
tions are identical for GBM-2 and GBM-5, this setup allows us to sidestep challenges with
quantifying capacity for different model families.

The oracle used is another GBM, with no size/capacity restrictions, learned on the
training dataset. The model sizes explored are {1, 2, ..., 10}. Figure 10 shows how δF1 varies
with model size (denoted as “num trees”) for the datasets senseit-aco, senseit-sei,

cod-rna and higgs, for each of the models GBM-2 and GBM-5.
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Figure 10: The above plots show how the capacity of a model family influences improve-
ments, for different datasets. With a higher max depth setting for GBMs, the
improvements decline faster with an increase in number of trees.
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As we might expect, we observe that improvements for GBM-5, the model with the
higher capacity, diminish faster with increasing size, compared to GBM-2.

4.2 Comparisons

In this section, we present a comparative evaluation of our technique. We compare against
the following techniques:

1. Supervised uncertainty sampling: the interpretable model, of a given size, is iteratively
trained on a growing subset of training data; this subset starts with the b most un-
certain points in the training data, with b-sized batches of the most uncertain points
from the remaining training data being progressively added to it. At every iteration,
the model is evaluated on a validation set, and the one with the highest F1-macro
score is picked for comparison. We compare against this technique because:

(a) This explores an obvious possibility: can a heuristic-driven, simple algorithm
outperform our algorithm?

(b) Although we borrow this technique from Active Learning (Lewis & Gale, 1994),
this version is significantly more powerful, primarily because of the oracle’s su-
pervision: we have reliable uncertainty scores from a powerful model. Because
of this, we are able to avoid sampling bias arising due to a partial view of the
uncertainty distribution (detailed in Section A.2).

(c) Even within the Active Learning community, uncertainty sampling is a strong
baseline for Logistic Regression (Yang & Loog, 2018), and by extension, we
expect it to be a strong baseline for learning LPMs.

We use a batch size of b = 10. The algorithm is described in detail in Section A.1.

2. Density Trees: We also compare against our previous work on density trees since it
uses a similar philosophy of determining an optimal distribution to build accurate
small models. We use the parameter search space described in Ghose and Ravindran
(2020).

4.2.1 Setup

The experimental setup is identical to the one used for the validation experiments in terms
of the datasets (see Section 4.1.1), models (Section 4.1.2), oracles (Section 4.1.3) and opti-
mization search space (Section 4.1.5). The metrics differ, and these are described next.

4.2.2 Metrics

To compare techniques, we wish to measure the following outcomes over multiple trials:

1. The extent to which a technique is better.

2. The proportion of times a technique is better.

The following properties are desirable for a metric that measures the first kind of out-
comes:
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1. It should be bounded, so that scores across different data, model sizes, etc., are on
the same scale.

2. It should be easy to infer which approach is better.

We introduce a score called the Scaled Difference in Improvement (SDI), that possesses
these properties. The SDI is defined in terms of the improvement produced by our method,
δF1ora, and the alternative method, δF1alt:

SDI =

{
δF1ora
H − δF1alt

H , if H > 0

0, if H = 0
(11)

where H = max {δF1alt, δF1ora}

The central idea here is that the improvements possible across the competing techniques
are in [0, H], and the SDI score measures the difference between the fractions of this range
realized by either technique. Note that H ≥ 0 since δF1ora ≥ 0 and δF1alt ≥ 0. This score
has the following intuitive properties:

1. SDI ∈ [−1, 1]

2. SDI > 0 when δF1ora > δF1alt

3. SDI = 0 when δF1ora = δF1alt

4. SDI < 0 when δF1ora < δF1alt

The SDI score may be seen as the Mean Signed Deviation15 (MSD): δF1ora − δF1alt,
normalized with the maximum possible improvement H. We don’t directly use MSD as
δF1 ∈ [0,∞) makes it unbounded.

For ease of interpretation, we average the SDI scores at the level of a dataset, across
model sizes, for a given model and oracle. This averaged score is denoted by SDI.

To measure the second kind of outcomes, we report the percentage of times δF1ora >
δF1alt across these model sizes. This is denoted as pct better.

We consider the oracle-based approach to be a meaningful contribution if SDI > 0 and
pct better > 50% compared to alternatives.

4.2.3 Observations

Table 3 and Table 4 compare our approach to Supervised Uncertainty Sampling and the
Density Tree based approach, respectively. All δF1ora and δF1alt scores used are the average
over three runs. This is the presentation format followed:

1. For each dataset, model and oracle combination we present two scores: (1) SDI and
(2) pct better.

2. Favorable outcome values - SDI > 0 or pct better > 50 - are colored green, unfavorable
outcomes are colored red, and tied values are unformatted.

15. https://en.wikipedia.org/wiki/Mean signed deviation
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Table 3: LPM, DT compared to Supervised Uncertainty Sampling

LPM DT

dataset GBM RF ANY GBM RF ANY

cod-rna 0.23, 87.50% -0.21, 50.00% 0.36, 87.50% 0.14, 50.00% 0.26, 60.00% 0.57, 90.00%
ijcnn1 0.24, 66.67% 0.10, 60.00% 0.44, 80.00% -0.29, 35.71% 0.25, 80.00% 0.29, 80.00%
higgs 0.83, 100.00% 0.10, 60.00% 0.86, 100.00% -0.05, 33.33% 0.52, 83.33% 0.63, 83.33%
covtype.binary 0.41, 93.33% -0.05, 33.33% 0.48, 100.00% -0.08, 22.22% 0.17, 45.45% 0.28, 54.55%
phishing 0.41, 86.67% 0.25, 100.00% 0.54, 100.00% 0.24, 40.00% -0.15, 33.33% 0.41, 53.33%
a1a 0.04, 66.67% -0.05, 40.00% 0.10, 73.33% -0.31, 11.11% 0.53, 91.67% 0.61, 100.00%

pendigits 0.76, 100.00% 0.85, 100.00% 0.89, 100.00% 0.29, 61.54% 0.21, 50.00% 0.31, 57.14%
letter 0.95, 100.00% 0.95, 100.00% 0.98, 100.00% 0.50, 73.33% 0.14, 46.67% 0.62, 73.33%
Sensorless 0.02, 60.00% 0.44, 93.33% 0.46, 100.00% 0.65, 78.57% 0.44, 64.29% 0.65, 73.33%
senseit aco -0.01, 46.67% 0.07, 80.00% 0.11, 86.67% 0.79, 100.00% 0.47, 75.00% 0.79, 87.50%
senseit sei -0.11, 0.00% 0.02, 60.00% 0.07, 60.00% 0.08, 28.57% -0.02, 42.86% 0.34, 57.14%
covtype 0.76, 100.00% 0.61, 93.33% 0.85, 100.00% 0.52, 66.67% 0.48, 60.00% 0.70, 73.33%
connect-4 0.17, 60.00% 0.10, 53.33% 0.44, 93.33% 0.04, 53.33% 0.21, 66.67% 0.45, 80.00%
OVERALL 0.37, 73.94% 0.26, 71.81% 0.51, 90.96% 0.21, 52.03% 0.26, 60.51% 0.50, 73.42%

3. In the case of Supervised Uncertainty Sampling, Table 3, scores are compared across
the same oracles, i.e., a score using oracle GBM in our method, is compared to a
score from Supervised Uncertainty Sampling using a GBM .

4. Unlike supervised uncertainty sampling, there is no notion of an oracle in the Density
Tree based approach. In Table 4, for a combination of dataset, model and model size,
improved scores from using either the GBM or RF as the oracle are compared to the
same reference score from the density tree based approach.

5. We also introduce two special groupings:

• ANY: For each model size, the SDI score considered is the higher of the ones
obtained from using the GBM or RF as oracles. The SDI and pct better scores
are computed based on these scores. This grouping represents the ideal way to
use our technique in practice: try multiple oracles and pick the best.

• OVERALL: This averages results across datasets, to provide an aggregate view
of the comparison.

The entries identified by OVERALL and ANY provide comparison numbers aggre-
gated over datasets, model sizes and oracles.

The predominant amount of values colored green, indicate that our technique performs
better in most settings. In both cases, the OVERALL +ANY entries indicate that our
technique works better on average. The pct better scores in these entries also indicate that
we seem to do better much more frequently in the case of LPMs than DTs.

We note here that the space of sampling distributions modeled by our technique subsume
the ones modeled by either competing technique:

1. Supervised Uncertainty Sampling assumes high uncertainty points are favorable; this
may be modeled with an IBMM with appropriate parameters.
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Table 4: LPM, DT compared to the Density Tree approach.

LPM DT

dataset GBM RF ANY GBM RF ANY

cod-rna -0.66, 0.00% -0.69, 0.00% -0.62, 0.00% 0.42, 66.67% 0.26, 66.67% 0.65, 88.89%
ijcnn1 0.30, 86.67% 0.08, 73.33% 0.34, 93.33% 0.26, 57.14% 0.74, 100.00% 0.74, 100.00%
higgs -0.04, 33.33% -0.11, 33.33% 0.03, 40.00% -0.27, 20.00% 0.59, 100.00% 0.59, 100.00%
covtype.binary -0.12, 40.00% -0.36, 26.67% -0.12, 40.00% 0.10, 55.56% 0.35, 80.00% 0.47, 90.00%
phishing 0.59, 93.33% 0.72, 100.00% 0.72, 100.00% 0.06, 26.67% 0.06, 33.33% 0.26, 46.67%
a1a -0.11, 46.67% -0.02, 60.00% -0.02, 60.00% -0.05, 55.56% 0.42, 72.73% 0.51, 81.82%

pendigits 0.62, 100.00% 0.55, 86.67% 0.64, 100.00% 0.14, 58.33% 0.20, 61.54% 0.20, 61.54%
letter 0.78, 100.00% 0.82, 100.00% 0.82, 100.00% -0.07, 33.33% -0.30, 13.33% -0.01, 40.00%
Sensorless 0.49, 80.00% 0.65, 100.00% 0.66, 100.00% -0.13, 28.57% -0.31, 14.29% -0.10, 26.67%
senseit aco 0.54, 100.00% 0.58, 100.00% 0.59, 100.00% 0.46, 85.71% 0.29, 62.50% 0.30, 75.00%
senseit sei 0.63, 93.33% 0.65, 100.00% 0.68, 100.00% -0.15, 28.57% 0.49, 85.71% 0.58, 85.71%
covtype -0.02, 46.67% 0.35, 86.67% 0.38, 86.67% 0.40, 66.67% 0.27, 53.33% 0.50, 73.33%
connect-4 0.55, 100.00% 0.45, 93.33% 0.62, 100.00% -0.23, 33.33% -0.20, 33.33% 0.05, 60.00%
OVERALL 0.31, 73.40% 0.32, 76.60% 0.40, 81.38% 0.08, 46.58% 0.17, 54.61% 0.33, 67.32%

2. Density Trees learn distributions that are based on the proximity of instances to class
boundaries; since uncertainty values also correlate with distance from class boundaries
- a high uncertainty value for an instance indicates it’s near a class boundary and vice
versa - this too is well within the scope of what an IBMM may represent.

Our hypothesis as to when the competing techniques outperform our technique is that the
optimal sampling distribution is easier to discover given their distributional assumptions.
For example, if the optimal distribution indeed turns out to be one where instances with high
uncertainty are preferred, the Supervised Uncertainty Sampling technique would quickly
discover this, while our technique would need to navigate a larger search space to converge
to this solution. Our technique would likely do better on such problems with a larger
iteration budget or an appropriately defined prior; we leave this analysis for future work.

Both Supervised Uncertainty Sampling and our technique use distributions over un-
certainty values. This makes it interesting to contrast them, and is reviewed in Section
A.3.

4.3 Additional Applications

Viewing our technique purely as a tool to find the optimal distribution for effective learning,
we explore some additional interesting applications of it in this section.

4.3.1 Different Feature Spaces

In our previous experiments, the feature vector representation was identical for the oracle
and the interpretable model. This is also what Algorithm 2 implicitly assumes. Here, we
consider the possibility of going a step further and using different feature vectors. If fO
and fI are the feature vector creation functions for the oracle and the interpretable model
respectively, and xi is a “raw data” instance, then:

1. The oracle is trained on instances fO(xi), and provides uncertainties uO(fO(xi)).
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2. The interpretable model is provided with data fI(xi), but the uncertainty scores
available to it are uO(fO(xi)).

The motivation for using different feature spaces is that the combination (O, fO) may
be known to work well together and/or a pre-trained oracle might be available only for this
combination.

We illustrate this application with the example of predicting nationalities from sur-
names of individuals. Our dataset (Rao & McMahan, 2019) contains examples from 18
nationalities: Arabic, Chinese, Czech, Dutch, English, French, German, Greek, Irish, Ital-
ian, Japanese, Korean, Polish, Portuguese, Russian, Scottish, Spanish, Vietnamese. The
representations and models are as follows:

1. The oracle model is a Gated Recurrent Unit (GRU) (Cho et al., 2014), that is learned
on the sequence of characters in a surname. The GRU is calibrated with temperature
scaling (Guo, Pleiss, Sun, & Weinberger, 2017).

2. The interpretable model is a DT, where the features are character n-grams, n ∈ 1, 2, 3.
The entire training set is initially scanned to construct an n-gram vocabulary, which
is then used to create a sparse binary vector per surname - 1s and 0s indicating the
presence and absence of an n-gram respectively.

Figure 11 shows a schematic of the setup.

Figure 11: The feature representations for the oracle and the interpretable model may be
different. Consider the name “Amy”: the GRU is provided its letters, one at a
time, in sequence, while the DT is given an n-gram representation of the name.

The n-gram representation leads to a vocabulary of ∼ 5000 terms, that is reduced to
600 terms based on a χ2-test in the interest of lower running time (see Section A.11 for
details). DTs of different depth ≤ 15 were trained. A budget of T = 3000 iterations was
used (the search space for Φ is the same as in Section 4.1.5), and the relative improvement
in the F1 macro score (as in Equation 9) is reported, averaged over three runs. Figure 12
shows the results.
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Figure 12: Improvements δF1 are shown for different depths of the DT.

We see large improvements at small depths, that peak with δF1 = 83.04% at depth = 3,
and then again at slightly larger depths, which peak at depth = 9 with δF1 = 12.34%.

To obtain a qualitative idea of the changes in the DT using a oracle produces, we look
at the prediction rules for Polish surnames, when DT depth = 3. For each rule, we also
present examples of true and false positives.

Baseline rules - precision = 2.99%, recall = 85.71%, F1 = 5.77%:

Rule 1. k ∧ ski ∧ ¬v

• True Positives: jaskolski, rudawski

• False Positives: skipper (English), babutski (Russian)

Rule 2. k ∧ ¬ski ∧ ¬v

• True Positives: wawrzaszek, koziol

• False Positives: konda (Japanese), jagujinsky (Russian)

Oracle-based DT rules - precision = 25.00%, recall = 21.43%, F1 = 23.08%:

Rule 1. ski ∧ ¬(b ∨ kin)

• True Positives: jaskolski, rudawski

• False Positives: skipper (English), aivazovski (Russian)

We note that the baseline rules are in conflict w.r.t. the literal “ski”, and taken together,
they simplify to k ∧ ¬v. This makes them extremely permissive, especially Rule 2, which
requires the literal “k” while needing “ski” and “v” to be absent. Not surprisingly, these
rules have high recall (= 85.71%) but poor precision (= 2.99%), leading to F1 = 5.77%.

In the case of the oracle-based DT, now we have only one rule, that requires the atyp-
ical trigram “ski”. This improves precision (= 25%), trading off recall (= 21.43%), for a
significantly improved F1 = 23.08%.
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Figure 13: The distribution of nationalities in false positive predictions for the baseline and
oracle based models, shown for predicting Polish names. Only nationalities with
non-zero counts are shown.

The difference in rules may also be visualized by comparing the distribution of nation-
alities represented in their false positives, as in Figure 13. We see that the baseline DT
rules, especially Rule 2, predict many nationalities, but in the case of the DT learned using
the oracle, the model confusion is concentrated around Russian names, which is reasonable
given the shared Slavic origin of many Polish and Russian names.

We believe this is a particularly powerful and exciting application of our technique, and
opens up a wide range of possibilities for translating information between models of varied
capabilities.

4.3.2 Size-Constrained Training Sample

Recall from Section 3.4, we make use of a parameter Ns, denoting sample size, that we had
constrained to ∈ [400, 10000] (Section 4.1.5) in our experiments. But it is possible to set
this to much smaller values to study the sampling distribution for patterns, significance of
regions in the input space, etc. Figure 14 shows an example of this: we set Ns ∈ [50, 50] (so
it can take exactly one value, 50), and for the dataset shown in Figure 14(a), we visualize
the sampling distribution when the model is a DT of depth = 2 in Figure 14(b) vs when
depth = 4 in Figure 14(c). The dataset is balanced, and the oracle used is a GBM.

We see the following interesting patterns: (a) at depth = 2, the DT picks points from
both regions where label = 1, but the larger region shows higher density. This is possibly
because owing to its limited capacity, the model is able to effectively parameterize only one
region, and therefore it prioritizes correct classification of points around the larger region,
(b) at depth = 4, we see increased sampling density in the smaller region with label = 1 as
well.
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(a)

(b) (c)

Figure 14: Our technique might be used to identify the optimal sample of a given size.
(a) shows the original dataset. (b) and (c) visualize the learned distribution
of points, using a KDE, for DTs with depth = 2 and depth = 4 respectively,
for a sample size of 50. NOTE: the connection shown in (c), between the two
originally disjoint regions with label = 1, is an artifact of the KDE.
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4.3.3 Vector Model Size

Although we have been using a scalar notion of model size - depth for DT, number of
terms for LPM, number of trees for a GBM - Algorithm 2 doesn’t restrict us from using a
vector-valued model size η. For example, in the case of GBMs, we may consider the notion
of model size η = [max depth, num trees], where the quantities respectively denote the
maximum depth allowed for each constituent DT in a GBM, and the number of DTs in the
GBM. In Figure 15 we show how improvements for GBMs vary when 1 ≤ max depth ≤ 5
(x-axis) and 1 ≤ num trees ≤ 5 (y-axis); the oracle used is a GBM as well (unconstrained
in size), and results for these datasets are shown: (a) higgs (b) cod-rna (c) senseit-sei

and (d) senseit-aco. The improvements are averaged over three runs. We observe the
familiar pattern that as model sizes increase, in terms of both max depth and num trees,
improvements decrease.
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(c) dataset: senseit_sei
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(d) dataset: senseit_aco
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Figure 15: Improvements in test F1-macro for multiple datasets for different sizes of GBM
models are shown. Here, model size is the combination of max depth and number
of trees in the GBM model. Greater improvements are seen at lower sizes.

4.4 Summary

We summarize our observations from our experiments here:

1. For all combinations of interpretable and oracle models - {LPM,DT}×{GBM,RF}
- we see good improvements, δF1, especially at small sizes (Section 4.1.6). Sometimes
these may be > 100%. For model sizes beyond a point, we observe δF1 ≈ 0.
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2. The results in Section 4.2 strongly indicate that the precise relationship of the sam-
pling distribution and the uncertainty needs to be learned, and a heuristic strategy
of exclusively sampling high uncertainty points is not optimal . We believe this is
an important result, especially given that this is true for the supervised version of
uncertainty sampling, which is significantly more powerful than standard uncertainty
sampling.

3. Our approach produces better accuracy, in general, compared to both supervised
uncertainty sampling and the density tree based approach.

The results in Table 3 and Table 4 from Section 4.2.3 are summarized in Table 5.
Recall that the combination OVERALL + ANY averages over datasets and oracles;
Table 5 shows these summary statistics.

Table 5: Summary comparison results, OVERALL + ANY

compared to model SDI pct better

supervised uncertainty sampling LPM 0.51 90.96%
DT 0.50 73.42%

density trees LPM 0.40 81.38%
DT 0.33 67.32%

We observe that density trees are more competitive to our technique than supervised
uncertainty sampling: smaller SDI and pct better scores. This is to be expected since
the density tree based approach is capable of learning flexible distributions over the
input space.

4. A remarkable fact of practical value is that we don’t tune the parameters Φ for a
specific problem. The value ranges for these are fixed across tasks, with only the
iteration budget T being changed - as described in Section 4.1.5. This highlights
another strength of the technique: Φ need not be tuned for obtaining meaningful
improvements, as long as it admits a broad enough set of uncertainty distributions.

5. Section 4.3 showcases the generality of the proposed technique: we successfully used it
with differing feature spaces across the oracle and the interpretable model, to identify
the optimal training sample for a given size, and with vector valued model sizes. These
applications considerably broaden the impact of our work.

Importantly, the various positive results from this section should be seen as represen-
tative of the proposed framework, and not just our implementation. In other words, these
results establish a lower bound for the outcomes, because they may be potentially improved
by using different components within the larger framework, e.g., by using a different opti-
mizer from among the ones discussed in Feurer and Hutter (2019) or Turner et al. (2021)
.
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Table 6: Improved scores averaged over three trials, shown for different parameter settings,
with and without flattening. Here, Setting 1 is {max components = 500, scale =
10000} and Setting 2 is {max components = 50, scale = 10}. “curr.” signifies
this is the current setting for our experiments in Section 4, while “low” signifies
lower values of parameters. Highlighted cells indicate positve effect of flattening.

Setting 1 (curr.) Setting 2 (low)

dataset dist. 1 2 3 1 2 3

Sensorless original 0.39 0.54 0.57 0.38 0.42 0.41
flattened 0.44 0.53 0.55 0.43 0.54 0.59

covtype.binary original 0.66 0.69 0.71 0.64 0.66 0.71
flattened 0.68 0.73 0.73 0.65 0.71 0.71

5. Discussion

Having looked at both the theory and empirical outcomes, we revisit a few points of interest
in this section.

1. Effect of flattening: We first consider the question: does flattening (Section 3.6)
help? Table 6 contrasts improved F1 scores obtained with (rows denoted as “original”)
and without (denoted “flattened”) flattening the uncertainty distribution. This is
shown for the datasets Sensorless and covtype.binary, for model size ∈ {1, 2, 3},
with model = LPM and oracle = GBM . Two different parameter settings are used:
(a) Setting 1 is what we have used in the experiments in Section 4: maximum allowed
Beta components are 500 and scale = 10000 (b) Setting 2 looks at much lower values
of these parameters where maximum allowed components is 50 and scale = 10. The
scores presented are the average over three trials.

We observe that while flattening influences results, other parameters determine the
magnitude of its effect. At Setting 1, Sensorless is affected at size = 1 (flattening is
better), but at higher sizes the differences seem to be from random variations across
trials. At Setting 2 however, the differences are seen for size ∈ {1, 2, 3} (flattening is
better). For covtype.binary only size = 2 seems to be affected in either setting.

Recall we had noted in Figure 3 that the datasets Sensorless and covtype.binary

have non-smooth and smooth uncertainty distributions respectively. The observations
in Table 6 align well with the expectation that Sensorless is positively affected by
the transformation, while results for covtype.binary remain mostly unchanged.

Based on these tests, we hypothesize that for non-smooth uncertainty distributions,
flattening makes our technique robust across parameter settings. It does not affect
smooth distributions in a significant way. Of course, rigorous and extensive tests are
required to conclusively establish this effect.

2. Alternative Parameterization: Instead of using shape variables {a, b, a′, b′} to
characterize the IBMM (Section 3.4), which lie in the interval (0,∞), one might
wonder if its simpler to parameterize based on the mean, µ ∈ [0, 1] (bounded by the
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range of uncertainty values), and standard deviation, σ ∈ [0, 0.5] (also bounded; this
range is a property of the Beta distribution). While this is appealing, we need to
consider that unlike the Normal distribution, µ and σ are not independent for a Beta
distribution. For instance, µ → 1 =⇒ σ → 0. The optimization would need to
account for this dependence, and we would lose our current convenience of using only
box constraints. The scatter plot in Figure 16 marks the different combinations of µ
and σ for which valid Beta distributions exist.

Figure 16: Blue dots indicate a valid Beta distribution exists for the corresponding mean
and standard deviation values.

3. Measuring compaction: We mentioned in the Introduction, Section 1, that a pos-
sible area of application of this work might be model compression. We would like
to point out that the compaction profile (Figure 5, Figure 24) plots emphasize this
use-case: they’re a visual tool to determine the minimal model size achievable using
our technique, given a baseline model size.

To formalize this connection, we introduce the score Compaction Index (CI) that
denotes the extent of model size decrease possible, up to a size where δF1 ≈ 0. Figure
17 shows a sample compaction profile. The CI score, where CI ∈ [0, 1], is the ratio
of the area in red to the area in green.

The more reduction in model size our technique can obtain, the closer the red curve
is to the green boundary, and CI ≈ 1. If no reduction is possible at any model size,
the red line coincides with the diagonal and CI = 0. Clearly, this score is specific to
a model family F , a training algorithm f and a specific notion of model size. And
ideally, this should be averaged over all possible datasets and oracles.

Here are the CI scores for our experiments :

• LPM : CI = 0.57

• DT : CI = 0.16

These scores indicate that LPMs may be compacted better than DTs, for the re-
spective notions of size we use here - this may also be seen from the plots in Figure
4, where the improvements for DTs decrease faster, with growing model size, than
those for LPMs.
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Figure 17: Compaction Index

4. Upper bound of improvements: In Equation 2, and then in Equations 3 and 4,
the improved accuracy of the interpretable model is shown bounded by the oracle
accuracy. For example, see the rightmost term in Equation 2, reproduced below:

accuracy(MIpη, p) ≤ accuracy(MIqη, p) ≤ accuracy(MOp∗, p) (12)

We empirically show this to be true now. In Figure 18, we show the distribution of
relative difference between the improved accuracy of a LPM model and the accuracy
of a GBM oracle.

Using the notation in the equation above, we calculate the relative difference ∆F1 as:

∆F1 =
accuracy(MIqη, p)− accuracy(MOp∗, p)

accuracy(MOp∗, p)
(13)

Here, of course, we measure accuracy using the F1 macro score.

Figure 18: Distribution of %age accuracy difference from the oracle accuracy.
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There is one distribution plotted per dataset, where the distribution uses information
from multiple runs, for multiple model sizes. It may be seen in Figure 18 that all
relative differences are at most 0 (there is some spillover to the right of 0 owing to the
use of KDEs for visualization).

For precise numbers, we look at Table 7, which lists the %age of cases where the
interpretable model’s accuracy exceeded that of the oracle, and the average value
of the relative difference for the cases where it is positive. Such cases seem to be
insignificant. See Figure 26 for plots for other model-oracle combinations.

Table 7: The percentage of cases where we see positive relative difference w.r.t. oracle, and
the mean of these positive difference are shown.

model oracle %age positive cases mean positive value

LPM GBM 0.00% −
LPM RF 6.03% 1.60
DT GBM 3.86% 2.31
DT RF 3.22% 0.83

6. Future Work

The results from our experiments suggest multiple promising avenues for future research.
We list some of them here:

1. We might think of our technique as learning a sampling distribution p′(xi) indirectly
on the input space: via p(uMO

(xi)), the distribution over uncertainty values produced
by the oracle. An alternative view might be to directly learn instance weights wi
instead, where wi = p′(xi). This approach clearly suffers from challenges in scaling -
there are as many weights as training instances. However, recent work suggests that
for differentiable model losses, this problem might be efficiently solved by formulating
it as a bi-level optimization problem (Pedregosa, 2016; Lorraine, Vicol, & Duvenaud,
2020); which makes this a feasible direction to explore. The expected benefit is this
might be faster16, at least for moderately sized datasets.

This approach brings its own challenges that future work would need to consider: (a)
since gradient information is required, the loss function must be known; therefore this
approach is not model-agnostic (b) even if an automatic differentiation framework is
used, such as JAX (Bradbury et al., 2018), to generalize to unseen loss functions,
model families like DTs remain out of scope since their loss isn’t differentiable.

NOTE that this aspect distinguishes our method from KD: beyond the uncertainty
scores from the oracle, we do not require any additional information, e.g., “dark knowl-
edge” (Hinton, Vinyals, & Dean, 2015b; Korattikara, Rathod, Murphy, & Welling,
2015).

16. Pedregosa (2016) compares this approach against BO for the task of hyperparameter tuning; these
numbers should be assumed to be indicative only, since the BO algorithm used is not TPE.
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2. The standard way to evaluate active learning algorithms is to evaluate model accuracy
against the number of labeled training data instances. It is interesting to consider an
alternative approach: for a given budget of labeled instances, measure the divergence
between the sampling distribution our method learns (as in Section 4.3.2) and the one
that an active learner proposes for labeling. Such an analysis is insightful since it can
indicate precisely which points an active learner is supposed to label.

3. We noted that improvements from our technique diminish as model size grows (Section
4.1.6). For larger model sizes, a possible direction to explore might be to “chain”
together multiple small models. This is similar to gradient boosting, and it would be
especially informative to compare the two approaches.

4. An obvious question to ask is if our observations around the impact of training dis-
tribution on accuracy may be theoretically explained. There is some recent work in
the area of KD that might serve as fruitful starting points: (a) Dao, Kamath, Syrgka-
nis, and Mackey (2021) provide theoretical tools to analyze distillation by treating
it as a semi-parameteric inference problem (b) Menon, Rawat, Kumar, Reddi, and
Kim (2021) propose a connection between the effectiveness of a teacher and its abil-
ity to approximate Bayes class-probabilities. (c) study of sample re-weighting on the
effectiveness of distillation (Zhang, Hu, Qin, Xu, & Wang, 2021; Lu et al., 2021).

5. It would also be interesting to explore the connection between the sample of a given
size our method finds (Section 4.3.2) and the data Shapley value (Ghorbani & Zou,
2019): a per-instance value quantifying the contribution of an instance to predictor
accuracy. Some questions of interest are: (a) does an instance that has a high sampling
probability across a range of sample sizes, per our method, also receive a high data
Shapley value? (b) if there is indeed a correspondence between the two techniques,
what algorithmic ideas may be borrowed from one technique to another?

7. Conclusion

In this paper we introduced a novel technique to learn an interpretable model, that reduces
the trade-off between model size and accuracy. The practical implication of this work is
that instead of picking an interpretable model family based on accuracy, one may use our
method to construct accurate models for their preferred model family.

Producing an accurate model is formulated as an optimization problem of identifying
training data that maximizes learning. This process is aided by an oracle model. Our
technique is shown to possess multiple favorable properties: (a) the optimization uses a
fixed set of seven variables, irrespective of the dimensionality of the data (b) a reasonable
choice of the search space produces good results across datasets (c) the technique is model-
agnostic wrt both the interpretable and oracle models (d) it may be used even when the
feature spaces of the interpretable model and oracle are different (e) its a framework, which
leaves open the possibility of improving upon it. We have also shown some additional
interesting applications for our technique.

We have provided extensive empirical validation to establish the utility of the technique.
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This work also presents some intriguing deeper findings : (a) train and test distributions
need not be identical for optimal learning (b) our observations point to a “small model
effect”: this difference in distributions exists for small model sizes, and it is in this model
size regime that we observe most improvements.

We believe that the general theme of the proposed technique, that of shaping data
density to influence accuracy, as well as the deeper results, offer promising directions for
future research.
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Appendices

A. Appendix A

A.1 Supervised Uncertainty Sampling

Algorithm 3: Supervised Uncertainty Sampling

Data: Dataset D, model size η, trainO,h(), trainI,g(), batch size b
Result: Test set accuracy stest, and interpretable model M∗

1 Create stratified splits Dtrain, Dval, Dtest from D
2 MO ← trainO,h(Dtrain, ∗)
3 Iremaining ← {1, 2, ..., |Dtrain|} be an index set of Dtrain

4 Icurrent ← {}
5 for t← 1 to d|Dtrain|/be do
6 IU ← set of top b entries from Iremaining, based on uMO(xi), i ∈ Iremaining
7 Iremaining ← Iremaining − IU
8 Icurrent ← Icurrent ∪ IU
9 Dt ← {Dtrain,i|i ∈ Icurrent}

10 Mt ← trainI,g(Dt, η)
11 st ← accuracy(Mt, Dval)

12 end
13 t∗ ← arg maxt {s1, s2, ..., sT−1, sT }
14 M∗ ←Mt∗

15 stest ← accuracy(M∗, Dtest)
16 return stest, M

∗

In Algorithm 3:

1. The loop in lines 5-11 runs d|Dtrain|/be times, where every iteration adds the b most
uncertain points to the current training dataset Dt. If b doesn’t evenly divide |Dtrain|,
the last iteration picks all remaining points.

2. In our implementation, uMO(xi) in line 6 is precomputed and stored as a lookup table
to reduce execution time.

3. In our experiments, we use a batch size b = 10. Note that this gives us opti-
mal models as per Algorithm 3, for all batch sizes of the form 10k, where k ∈
{1, 2, ..., b|Dtrain|/10c}

The modified algorithm is a significantly more powerful version compared to the ones
typically used in Active Learning setups, due to the following reasons:

1. We do not assume a cost for procuring or applying the oracle, which contrasts with
the typical active learning setup. Thus, our oracle utilizes complete label information
and our model has access to reliable uncertainty scores; this avoids the sample bias
discussed in Section A.2 (visualized in Figure 19).
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2. Since we have complete label information, we have a validation set Dval available to us.
In active learning, a validation set would be created from within the current labelled
subset of data, which often makes it statistically insignificant or non-representative of
the true distribution, especially at early iterations.

3. We do not have to estimate how many times the loop in lines 5-11 must run - this is
executed till all data from Dtrain has been used up to train the model. Estimating the
number of iterations is required when performing active learning since every iteration
incurs a cost - that of calling the oracle to compute IU . Consequently, here, we have
the liberty of being able to pick the best model based on a validation set Dval.

A.2 Simple Uncertainty Sampling in Active Learning

In active learning, the goal is to learn a model when we are given none or few of the labels
of our training data, but we are allowed to query for labels for a cost (Settles, 2009). This
is helpful in scenarios where acquiring labels is expensive, and instead of asking for labels
for a random 1000 points to train on, we could ask for the labels of a specific 200 points,
chosen in some manner, that leads to comparable model accuracy. Uncertainty Sampling
was introduced in (Lewis & Gale, 1994) to solve this problem. We begin by requesting the
labels of small batch of randomly sampled points - this is the labelled subset of the data.
The following steps are then repeated:

1. Construct a classifier on the current labelled subset.

2. Use it to provide uncertainty scores for unlabelled points in the data, and then request
labels for the top b (the precise value of b may be task specific) uncertain points. These
now become part of the labelled subset.

Although intuitive, this approach was shown to suffer from sample bias (Dasgupta & Hsu,
2008; Dasgupta, 2011). We illustrate this in Figure 19.

We consider the simple case where our data is located on a line, has two labels (denoted
by red and green in the figure) and most of the data is located at the extremes of the
line segment, as shown by blocks P and Q, each of which represent 45% of the overall
data. Here, learning a classifier is equivalent to identifying a single point on the line, and
the classification rule is we assign labels green and red, to left and right of this point,
respectively. B and C show two possible classifiers.

In the active learning setup, we observe only the points but not their labels. To use
uncertainty sampling, we pick our first small batch of points randomly and query their
labels. Because of the distribution of the data, its highly likely that we would only see
points from P and Q. The best classifier on this sample is C, which is midway between P
and Q. Plot A shows what the uncertainty across the input space looks like according to C.
In the next iteration, we will sample close to C, since that’s where the highest uncertainties
are, and the new classifier constructed would again be at location C. Subsequent iterations
would further reinforce the belief that C is the only class boundary. Here, the classification
error of C is 5%, but the optimal classifier is B, with an error of 2.5%, which uncertainty
sampling fails to discover. The key problem here is we may never see some boundaries,
like those defined by R, because of the combination of initial sample bias and subsequent
aggressive sampling.
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Figure 19: Uncertainty estimates from classifier after first iteration. Smaller boundaries are
missed since the sample predominantly comes from P and Q.

This problem does not affect us since the oracle has access to the complete training
data. Plot D shows the uncertainty distribution as per the oracle. However, as our results
show, even with its complete view of uncertainty landscape, simple uncertainty sampling is
not optimal.

A.3 Comparison of Uncertainty Distributions

It is instructive to look at some specific adjusted IBMMs in the context of the relative
performance of techniques. Figure 20 shows the plots from Figure 9 annotated with SDI
scores. These are for LPMs using GBM as the oracle.

The top row - (a), (b), (c) in Figure 20 - shows instances where our technique did much
better (SDI > 0); it would seem that these are cases where sampling exclusively at high
uncertainties is not an optimal distribution. Figure 20(d) shows a case where the optimal
distribution is composed exclusively of high uncertainty points - so its not surprising that
uncertainty sampling is at par with our technique (SDI = 0). (e) and (f) show similar
trends.

While these plots are helpful in developing intuition for the underlying process, we would
like to add the caveat that they are not conclusive in isolation. An example of this is (c) -
it is not clear why uncertainty sampling does so poorly here. Possibly, instances with low
uncertainties need to be sampled in a very specific manner that cannot be approximated
by selecting the top n uncertain points, for any n.

48



Learning Interpretable Models Using an Oracle

(a) a1a, size=2, SDI=1.0 (b) letter, size=2, SDI=1.0 (c) letter, size=3, SDI=0.93

(d) Sensorless, size=1, SDI=0 (f) connect-4, size=2, SDI=-0.62(e) senseit_sei, size=3, SDI=-0.3
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Figure 20: Examples of adjusted distributions are shown, and the SDI scores, measured
against supervised uncertainty sampling, are mentioned. The plots in the top
row are the same as in Figure 9. The top row - (a), (b), (c) - shows instances
where our technique performed relatively better, and the bottom row shows
cases where uncertainty sampling was competitive - (d) - or better - (e), (f).

49



A. Ghose & B. Ravindran

A.4 Uncertainty Metrics

Some other popular uncertainty metrics are:

1. Least confident: we calculate the extent of uncertainty w.r.t. the class we are most
confident about:

uM (x) = 1− max
yi∈{1,2,...,C}

M(yi|x) (14)

Here, we have C classes, and M(yi|x) is the probability score produced by the model17.

2. Entropy: this is the standard Shannon entropy measure calculated over class predic-
tion confidences:

uM (x) =
∑

yi∈{1,2,...,C}

−M(yi|x) logM(yi|x) (15)

We do not use the least confident metric since it completely ignores confidence distribu-
tion across labels. While entropy is quite popular, and does take into account the confidence
distribution, we do not use it since it reaches its maximum for only points for which the
classifier must be equally ambiguous about all labels; for datasets with many labels (one
of our experiments uses a dataset with 26 labels - see Table 1) we may never reach this
maximum.

Fig 21 visually shows what uncertainty values look like for the different metrics. Panel
(a) displays a dataset with 4 labels. A probabilistic linear Support Vector Machine (SVM)
is learned on this, and uncertainty scores corresponding to the metrics “margin”, “least
confident” and “entropy” are visualized in panels (b), (c) and (d) respectively. Darker
shades of gray correspond to high uncertainty. Observe that only the “margin” metric in
panel (b) achieves scores close to 1 at the two-label boundaries.

There is no best uncertainty metric in general, and the choice is usually application
specific (Settles, 2009).

17. The possibly confusing name “least confident” for this idea originated within the context of
uncertainty sampling, where we are interested in sampling the most uncertain point, x∗ =
arg minx[maxyi∈{1,2,...,C}M(yi|x)], which may be considered to be the instance with the “least most
confident label”.

50



Learning Interpretable Models Using an Oracle

(a) (b)

(c) (d)

Figure 21: Visualizations of different uncertainty metrics. (a) shows a 4-label dataset on
which linear SVM is learned. (b), (c), (d) visualize uncertainty scores based
on different metrics, as per the linear SVM, where darker shades imply higher
scores.

A.5 Flattening of the Uncertainty Distribution

Algorithm 4 details the flattening process mentioned in Section 3.6.
In lines 11 and 12 of Algorithm 4, we offset bin boundary limits by a small positive

value δ to avoid assignment conflicts across adjacent bins at their boundaries.
This algorithm produces a transformation that looks like the uniform distribution. We

prefer the likeness to the uniform distribution since it makes all regions within the interval
[0, 1] equally easy to discover.
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Algorithm 4: Flatten distribution of uncertainty scores {u(x1), u(x2), ..., u(xN )}
Data: {u(x1), u(x2), ..., u(xN )}, number of bins B
Result: {u′(x1), u′(x2), ..., u′(xN )}

1 bin size← dN/Be, bin range← 1/B
2 bin min← [ ], bin max← [ ]
3 Let sortedIndex(i) ∈ {1, 2, ..., N} be the index of u(xi) in the sequence of scores

ordered by non-decreasing values.
4 for j ← 1 to B do
5 bin min[j]← min{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
6 bin max[j]← max{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
7 end
8 for i← 1 to N do
9 j ← sortedIndex(i)

10 bin num← dj/bin sizee
11 boundary low ← (bin num− 1)× bin range+ δ
12 boundary high← bin num× bin range− δ
13 u′(xi)← low + u(xi)−bin min[j]

bin max[j]−bin min[j] × (boundary high− boundary low)

14 end
15 return {u′(x1), u′(x2), ..., u′(xN )}

A.6 Statistical Significance of Improvements

To assess the statistical significance of the improvements presented in Section 4.1.6, we
perform the one-sided version of the paired Wilcoxon signed-rank test, where the pairs of
scores F1baseline and F1new across datasets are tested for the following hypotheses:

• H0, null hypothesis: accuracies of models trained using the oracle are not better.

• H1, alternate hypothesis: accuracies of models trained using the oracle are better.

Since the extent of improvement may vary with model size, we perform the test sepa-
rately for different ranges or bins of normalized model sizes, where the bin boundaries are
decided by the Freedman-Diaconis rule (Freedman & Diaconis, 1981). Normalized model
sizes are used for convenient comparison with Figure 4. p-values of the significance tests,
for different model-oracle combinations, are shown in Figure 22. A dashed line at p = 0.05
is provided for reference. A high p-value strongly indicates H0, i.e., using the oracle is not
better than the baseline.

We observe that the improvements from using an oracle are indeed significant for most
model sizes and model-oracle combinations, when measured across multiple datasets. In
the case of DTs, we also observe that evidence in favor of retaining H0 is high at larger
model sizes; this aligns with our earlier observations.
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Figure 22: These plots show the p-values for the Wilcoxon signed-rank test, with the null
hypothesis H0: using the oracle does not produce better F1 test scores. The bin
boundaries are selected using the Freedman-Diaconis rule (Freedman & Diaconis,
1981). Low p-values in most cases indicate that an oracle guided model is more
accurate, especially at smaller model sizes. The significance level of 0.05 is shown
with a dashed line for reference.

A.7 Uncertainty Distribution for DT

The uncertainty distributions learned when using a DT with different oracles are shown in
Figure 23. The first row shows visualizes the aggregation of the IBMMs that were learned,
while the second row shows them adjusted with the uncertainty distribution from the oracle.
These are analogues of the LPM plots in Figure 7 and Figure 8.

The patterns we observe here are similar to what we saw for LPMs:

1. Top-row: the IBMMs seem to prefer both low and high uncertainty regions.

2. Bottom-row: when adjusted with the oracle’s uncertainty distribution, there is sam-
pling across the entire range of uncertainty values, with slight/occasional preference
for higher uncertainties.
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Figure 23: The aggregated IBMMs visualized when using a DT as our interpretable model.
The top row shows the aggregated IBMMs for different oracles: GBM (left) and
RF (right). The bottom row visualizes the IBMMs adjusted for the uncertainty
distribution.
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A.8 Compaction Profiles

Figure 24 shows the compaction profiles for all model-oracle combinations. These are dis-
cussed in Section 4.1.6, in reference to Figure 5.

Figure 24: For different combinations of models and oracles: {LPM,DT} × {GBM,RF},
these plots show the size of an improved model (y-axis), that may replace a
traditionally trained model of a given size (x-axis). A model is considered as a
replacement for another if its accuracy is at least as high as the latter.

A.9 IBMMs for Different Model Sizes

Figure 25 shows the IBMMs learned over uncertainties for individual model sizes of the
LPM , with GBM as the oracle,. These are not adjusted with the density of the uncertainty
distribution. The plot shows them for the datasets (a) covtype.binary and Sensorless.
We observe that the unified IBMM weighted by improvements, shown in Figure 7, are
indicative of the individual distributions in this Figure 25.
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Figure 25: IBMM distributions for model sizes {1, 2, ..., 15}, for the datasets (a)
covtype.binary and (b) Sensorless. These are for the combination of us-
ing LPM as the model with GBM as an oracle. Darker curves indicate higher
model sizes.

A.10 Improvements Relative to Oracle

Some of the positive values we see in Figure 26 may be attributed to spillovers due to the
kde fit. Their magnitudes and occurrences are typically small: these are detailed in Table
7.
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Figure 26: These plots show the distribution of the percentage relative difference of a
model’s improved score w.r.t. to the accuracy of the oracle it is trained with.
We note that this quantity is almost always non-positive as claimed in Equations
2, 3 and 4.
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A.11 Feature Selection for n-gram DT

For the experiments in Section 4.3.1, we perform feature selection to reduce their running
time. After the n-gram (n ∈ {1, 2, 3}) vocabulary is created from the training data, we
perform a χ2-test to select the k−best features. The original number of features is 5308.
To pick the smallest useful set of features, we test different values of k ≤ 1000. A test
constitutes of:

1. Construct a DT, for a given max depth, on the original set of features. Obtain its
test accuracy, F1all.

2. Construct a DT, with the same max depth, using only the k best features as per the
χ2-test, and obtain its test accuracy F1k.

3. Report:

δF1 = 100× F1k − F1all
F1all

We use the “macro” averaging for the F1 score to be consistent with other experiments in
the paper. All reported δF1 are averaged over ten runs.

Figure 27 shows how δF1 varies with k.

Figure 27: The relationship between δF1 and k ≤ 1000. Each data point is an average over
ten runs.

We observe that at around 600 features, δF1 ≈ 0%. The only exception is the case for
max depth = 3, but that is admissible since δF1 > 0, i.e., we seem to be improving the
accuracy .
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Bucilă, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of
the 12th acm sigkdd international conference on knowledge discovery and data mining
(p. 535–541). New York, NY, USA: Association for Computing Machinery. Retrieved
from https://doi.org/10.1145/1150402.1150464 doi: 10.1145/1150402.1150464

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In
Proceedings of the 21th acm sigkdd international conference on knowledge discovery
and data mining (pp. 1721–1730). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2783258.2788613 doi: 10.1145/2783258.2788613

Castellanos, S., & Nash, K. S. (2018, May). Bank of America Confronts AI’s ‘Black Box’
With Fraud Detection Effort. https://blogs.wsj.com/cio/2018/05/11/bank-of

-america-confronts-ais-black-box-with-fraud-detection-effort/.

Chang, C.-C., & Lin, C.-J. (2001). Ijcnn 2001 challenge: Generalization ability and text
decoding. In In proceedings of ijcnn. ieee (pp. 1031–1036).

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology , 2 , 27:1–27:27. (Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm)

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002, June). Smote:
Synthetic minority over-sampling technique. J. Artif. Int. Res., 16 (1), 321–357.

Chen, J., Song, L., Wainwright, M. J., & Jordan, M. I. (2018). Learning to explain: An
information-theoretic perspective on model interpretation. In J. G. Dy & A. Krause
(Eds.), Proceedings of the 35th international conference on machine learning, ICML
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